Publications by authors named "Mark M O'Mahony"

SignificanceSkin is recognized as an intricate assembly of molecular components, which facilitate cell signaling, metabolism, and protein synthesis mechanisms in order to offer protection, regulation, and sensation to the body. Our study takes significant steps to characterize in more detail the complex chemistry of the skin, in particular by generating a better understanding of the uppermost layer, the stratum corneum. Using a state-of-the-art 3D OrbiSIMS technique, we were able to observe the depth distribution, in situ, for a wide range of molecular species.

View Article and Find Full Text PDF

A functional metagenomics based approach exploiting the microbiota of suppressive soils from an organic field site has succeeded in the identification of a clone with the ability to inhibit the growth of Bacillus subtilis DSM10. Sequencing of the fosmid identified a putative β-lactamase-like gene abgT. Transposon mutagenesis of the abgT gene resulted in a loss in ability to inhibit the growth of B.

View Article and Find Full Text PDF

Background: Styrene is a toxic and potentially carcinogenic alkenylbenzene used extensively in the polymer processing industry. Significant quantities of contaminated liquid waste are generated annually as a consequence. However, styrene is not a true xenobiotic and microbial pathways for its aerobic assimilation, via an intermediate, phenylacetic acid, have been identified in a diverse range of environmental isolates.

View Article and Find Full Text PDF

The potential of using ozone for the removal of phenanthrene from several different soils, both alone and in combination with biodegradation using a microbial inoculant (Pseudomonas alcaligenes PA-10), was examined. The greater the water content of the soil the less effective the ozone treatment, with air-dried soils showing the greatest removal of phenanthrene; while soils with higher levels of clay also reduced the effectiveness of the ozone treatments. However, at least a 50% reduction in phenanthrene levels was achieved in air-dried soil after an ozone treatment of 6 h at 20 ppm, with up to 85% removal of phenanthrene achieved in sandy soils.

View Article and Find Full Text PDF