The NIH Center for Accelerated Innovations at Cleveland Clinic (NCAI-CC) was funded by the National Heart Lung and Blood Institute (NHLBI) to support academic investigators in technology development and commercialization. NCAI-CC was one of three multi-institutional Centers established in the fall of 2013. The goal of each Center was to catalyze the growth of an ecosystem of commercialization within their affiliated institutions and regions by managing a program of funding and guiding translational project development and by delivering commercialization education programs to participating investigators.
View Article and Find Full Text PDFCommercializing innovations in academic environments is notoriously challenging. Here, we describe the progress of the NIH Centers for Accelerated Innovations program — initiated in 2013 to address these challenges — which we believe could help set a new standard for the early-stage commercialization of biomedical innovations in academic environments.
View Article and Find Full Text PDFA new formulation for the construction of adaptive confidence bands in non-parametric function estimation problems is proposed. Confidence bands are constructed which have size that adapts to the smoothness of the function while guaranteeing that both the relative excess mass of the function lying outside the band and the measure of the set of points where the function lies outside the band are small. It is shown that the bands adapt over a maximum range of Lipschitz classes.
View Article and Find Full Text PDFBiochemical and genetic studies indicate that the inflammatory proteins, apolipoprotein E (ApoE) and alpha(1)-antichymotrypsin (ACT) are important in the pathogenesis of Alzheimer's disease (AD). Using several lines of multiply transgenic/knockout mice we show here that murine ApoE and human ACT separately and synergistically facilitate both diffuse A beta immunoreactive and fibrillar amyloid deposition and thus also promote cognitive impairment in aged PDAPP(V717F) mice. The degree of cognitive impairment is highly correlated with the ApoE- and ACT-dependent hippocampal amyloid burden, with PDAPP mice lacking ApoE and ACT having little amyloid and little learning disability.
View Article and Find Full Text PDFBehavioral assessment of genetically-manipulated mouse lines for Alzheimer's disease has become an important index for determining the efficacy of therapeutic interventions and examining disease pathogenesis. However, the potential for higher level statistical analyses to assist in these goals remains largely unexplored. The present study thus involved multimetric statistical analyses of behavioral and beta-amyloid (Abeta) deposition measures from four PDAPP-derived transgenic mouse lines that differ in extent of Abeta deposition.
View Article and Find Full Text PDF