Publications by authors named "Mark Leick"

CD70 has emerged as a promising target in acute myeloid leukemia (AML), and we have previously demonstrated the potency of an optimized CD70-targeted ligand-based CAR. However, here, we identify in vivo CD70 antigen escape as a limitation of single antigen targeting. Combination targeting of CD70 and CD33 may overcome AML antigen heterogeneity.

View Article and Find Full Text PDF
Article Synopsis
  • * A study analyzing 667 bone marrow harvests between 1999 and 2021 found a 13% contamination rate, primarily from common skin bacteria, with male donors showing significantly higher contamination rates (18% vs. 6.8% for females).
  • * The research is notable for being the largest single-center study to explore contamination rates and highlights male donor sex as a key factor, potentially due to differences in skin flora.
View Article and Find Full Text PDF

Approximately 50% of patients with hematologic malignancies relapse after chimeric antigen receptor (CAR) T cell treatment; mechanisms of failure include loss of CAR T persistence and tumor resistance to apoptosis. We hypothesized that both of these challenges could potentially be overcome by overexpressing one or more of the Bcl-2 family proteins in CAR T cells to reduce their susceptibility to apoptosis, both alone and in the presence of BH3 mimetics, which can be used to activate apoptotic machinery in malignant cells. We comprehensively investigated overexpression of different Bcl-2 family proteins in CAR T cells with different signaling domains as well as in different tumor types.

View Article and Find Full Text PDF

We report a first-in-human clinical trial using chimeric antigen receptor (CAR) T cells targeting CD37, an antigen highly expressed in B- and T-cell malignancies. Five patients with relapsed or refractory CD37+ lymphoid malignancies were enrolled and infused with autologous CAR-37 T cells. CAR-37 T cells expanded in the peripheral blood of all patients and, at peak, comprised >94% of the total lymphocytes in 4 of 5 patients.

View Article and Find Full Text PDF

Background: Adoptive cell therapy, such as chimeric antigen receptor (CAR)-T cell therapy, has improved patient outcomes for hematological malignancies. Currently, four of the six FDA-approved CAR-T cell products use the FMC63-based αCD19 single-chain variable fragment, derived from a murine monoclonal antibody, as the extracellular binding domain. Clinical studies demonstrate that patients develop humoral and cellular immune responses to the non-self CAR components of autologous CAR-T cells or donor-specific antigens of allogeneic CAR-T cells, which is thought to potentially limit CAR-T cell persistence and the success of repeated dosing.

View Article and Find Full Text PDF

In this first-in-human, investigator-initiated, open-label study, three participants with recurrent glioblastoma were treated with CARv3-TEAM-E T cells, which are chimeric antigen receptor (CAR) T cells engineered to target the epidermal growth factor receptor (EGFR) variant III tumor-specific antigen, as well as the wild-type EGFR protein, through secretion of a T-cell-engaging antibody molecule (TEAM). Treatment with CARv3-TEAM-E T cells did not result in adverse events greater than grade 3 or dose-limiting toxic effects. Radiographic tumor regression was dramatic and rapid, occurring within days after receipt of a single intraventricular infusion, but the responses were transient in two of the three participants.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) modified T cell therapies targeting BCMA have displayed impressive activity in the treatment of multiple myeloma. There are currently two FDA licensed products, ciltacabtagene autoleucel and idecabtagene vicleucel, for treating relapsed and refractory disease. Although correlative analyses performed by product manufacturers have been reported in clinical trials, there are limited options for reliable BCMA CAR T detection assays for physicians and researchers looking to explore it as a biomarker for clinical outcome.

View Article and Find Full Text PDF

Purpose: Targeting solid tumors with chimeric antigen receptor (CAR) T cells remains challenging due to heterogenous target antigen expression, antigen escape, and the immunosuppressive tumor microenvironment (TME). Pancreatic cancer is characterized by a thick stroma generated by cancer-associated fibroblasts (CAF), which may contribute to the limited efficacy of mesothelin-directed CAR T cells in early-phase clinical trials. To provide a more favorable TME for CAR T cells to target pancreatic ductal adenocarcinoma (PDAC), we generated T cells with an antimesothelin CAR and a secreted T-cell-engaging molecule (TEAM) that targets CAF through fibroblast activation protein (FAP) and engages T cells through CD3 (termed mesoFAP CAR-TEAM cells).

View Article and Find Full Text PDF

CAR-T cell therapy has emerged as a breakthrough therapy for the treatment of relapsed and refractory hematologic malignancies. However, insufficient CAR-T cell expansion and persistence is a leading cause of treatment failure. Exogenous or transgenic cytokines have great potential to enhance CAR-T cell potency but pose the risk of exacerbating toxicities.

View Article and Find Full Text PDF

CD33 and CD123 are expressed on the surface of human acute myeloid leukemia blasts and other noncancerous tissues such as hematopoietic stem cells. On-target off-tumor toxicities may limit chimeric antigen receptor T cell therapies that target both CD33 and CD123. To overcome this limitation, we developed bispecific human CD33/CD123 chimeric antigen receptor (CAR) T cells with an "AND" logic gate.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapies are medical breakthroughs in cancer treatment. However, treatment failure is often caused by CAR T cell dysfunction. Additional approaches are needed to overcome inhibitory signals that limit anti-tumor potency.

View Article and Find Full Text PDF

In 2 complementary Letters to Blood, Karschnia et al and Graham et al provide new insights into the neurological toxicities that are observed with B-cell maturation antigen–directed chimeric antigen receptor T-cell treatment for multiple myeloma, identifying a frequency of immune effector cell–associated neurotoxicity syndrome (ICANS) that exceeds 40%. Severe ICANS is identified in 8% of patients in this real-world series. Outcomes were generally favorable, although the authors describe rare, late Parkinsonism-like hypokinetic movement disorders (also known as movement and neurocognitive toxicities) post-ICANS in 2 patients.

View Article and Find Full Text PDF

The annual "Antibody Industrial Symposium", co-organized by LabEx MAbImprove and MabDesign, held its 10th anniversary edition in Montpellier, France, on June 28-29, 2022. The meeting focused on new results and concepts in antibody engineering (naked, mono- or multi-specific, conjugated to drugs or radioelements) and also on new cell-based therapies, such as chimeric antigenic receptor (CAR)-T cells. The symposium, which brought together scientists from academia and industry, also addressed issues concerning the production of these molecules and cells, and the necessary steps to ensure a strong intellectual property protection of these new molecules and approaches.

View Article and Find Full Text PDF
Article Synopsis
  • T cell-mediated hyperinflammatory responses, particularly cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), are recognized toxicities from CAR T cell therapy, with recent findings highlighting HLH-like toxicities as significant yet poorly defined complications.
  • A panel of experts from various medical fields has been formed to better understand and manage these HLH-like toxicities, now termed "immune effector cell-associated HLH-like syndrome (IEC-HS)," indicating a broader impact across different patient populations and CAR T cell constructs.
  • The panel proposes a framework for identifying IEC-HS, including a grading system to assess severity, and suggests treatment strategies and supportive care to improve patient outcomes and facilitate further
View Article and Find Full Text PDF

Background: Chimeric antigen receptor (CAR) T cells have achieved remarkable responses in patients with hematological malignancies; however, the potential of this therapeutic platform for solid tumors like glioblastoma (GBM) has been limited, due in large part to the targeting of single antigens in a heterogeneous disease. Strategies that allow CAR T cells to engage multiple antigens concomitantly may broaden therapeutic responses and mitigate the effects of immune escape.

Methods: Here we have developed a novel, dual-specific, tandem CAR T (TanCART) cell with the ability to simultaneously target both EGFRvIII and IL-13Rα2, two well-characterized tumor antigens that are frequently found on the surface of GBM cells but completely absent from normal brain tissues.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell therapy has revolutionized the treatment of hematologic malignancies. Approximately half of patients with refractory large B cell lymphomas achieve durable responses from CD19-targeting CAR-T treatment; however, failure mechanisms are identified in only a fraction of cases. To gain new insights into the basis of clinical response, we performed single-cell transcriptome sequencing of 105 pretreatment and post-treatment peripheral blood mononuclear cell samples, and infusion products collected from 32 individuals with large B cell lymphoma treated with either of two CD19 CAR-T products: axicabtagene ciloleucel (axi-cel) or tisagenlecleucel (tisa-cel).

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapy is effective in lymphoid malignancies, but there has been limited data in myeloid cancers. Here, we start with a CD27-based CAR to target CD70 ("native") in acute myeloid leukemia (AML), and we find modest efficacy in vivo, consistent with prior reports. We then use orthogonal approaches to increase binding on both the tumor and CAR-T cell sides of the immune synapse: a pharmacologic approach (azacitidine) to increase antigen density of CD70 in myeloid tumors, and an engineering approach to stabilize binding of the CAR to CD70.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) therapy has had a transformative effect on the treatment of haematologic malignancies, but it has shown limited efficacy against solid tumours. Solid tumours may have cell-intrinsic resistance mechanisms to CAR T cell cytotoxicity. Here, to systematically identify potential resistance pathways in an unbiased manner, we conducted a genome-wide CRISPR knockout screen in glioblastoma, a disease in which CAR T cells have had limited efficacy.

View Article and Find Full Text PDF

COVID-19 breakthrough cases among vaccinated individuals demonstrate the value of measuring long-term immunity to SARS-CoV-2 and its variants. We demonstrate that anti-spike T-cell responses and IgG antibody levels are maintained but decrease over time and are lower in BNT162b2- versus mRNA-1273-vaccinated individuals. T-cell responses to the variants are relatively unaffected.

View Article and Find Full Text PDF

CD19-directed chimerical antigen receptor T-cell (CAR-T) products have gained US Food and Drug Administration approval for systemic large B-cell lymphoma. Because of concerns about potential immune cell-associated neurotoxicity syndrome (ICANS), patients with primary central nervous system (CNS) lymphoma (PCNSL) were excluded from all pivotal CAR-T studies. We conducted a phase 1/2 clinical trial of tisagenlecleucel in a highly refractory patients with PCNSL and significant unmet medical need.

View Article and Find Full Text PDF