Natural products have long been a viable source of therapeutic agents, providing unique structures and mechanisms that may be beneficial for cancer treatment. Herein we first report on the anticancer activity OST-01, a natural product from Baccharis Coridifolia, on breast cancer cells, including triple-negative breast cancer (TNBC). OST-01 significantly inhibited cell proliferation and oncogenic activities of TNBC cells in vitro.
View Article and Find Full Text PDFAging is the greatest risk factor for breast cancer; however, how age-related cellular and molecular events impact cancer initiation is unknown. In this study, we investigated how aging rewires transcriptomic and epigenomic programs of mouse mammary glands at single-cell resolution, yielding a comprehensive resource for aging and cancer biology. Aged epithelial cells exhibit epigenetic and transcriptional changes in metabolic, pro-inflammatory and cancer-associated genes.
View Article and Find Full Text PDFEffects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers.
View Article and Find Full Text PDFThis study introduces multi-zone visco-Node-Pore Sensing (mz-visco-NPS), an electronic-based microfluidic platform for single-cell viscoelastic phenotyping. mz-visco-NPS implements a series of sinusoidal-shaped contraction zones that periodically deform a cell at specific strain frequencies, leading to changes in resistance across the zones that correspond to the cell's frequency-dependent elastic G' and viscous G″ moduli. mz-visco-NPS is validated by measuring the viscoelastic changes of MCF-7 cells when their cytoskeleton is disrupted.
View Article and Find Full Text PDFBreast cancer is predominantly an age-related disease, with aging serving as the most significant risk factor, compounded by germline mutations in high-risk genes like /. Aging induces architectural changes in breast tissue, particularly affecting luminal epithelial cells by diminishing lineage-specific molecular profiles and adopting myoepithelial-like characteristics. ELF5 is an important transcription factor for both normal breast and breast cancer development.
View Article and Find Full Text PDFMicroenvironment signals are potent determinants of cell fate and arbiters of tissue homeostasis, however understanding how different microenvironment factors coordinately regulate cellular phenotype has been experimentally challenging. Here we used a high-throughput microenvironment microarray comprised of 2640 unique pairwise signals to identify factors that support proliferation and maintenance of primary human mammary luminal epithelial cells. Multiple microenvironment factors that modulated luminal cell number were identified, including: HGF, NRG1, BMP2, CXCL1, TGFB1, FGF2, PDGFB, RANKL, WNT3A, SPP1, HA, VTN, and OMD.
View Article and Find Full Text PDFA primary function of DNA methylation in mammalian genomes is to repress transposable elements (TEs). The widespread methylation loss that is commonly observed in cancer cells results in the loss of epigenetic repression of TEs. The aging process is similarly characterized by changes to the methylome.
View Article and Find Full Text PDFTissues comprise ordered arrangements of cells that can be surprisingly disordered in their details. How the properties of single cells and their microenvironment contribute to the balance between order and disorder at the tissue-scale remains poorly understood. Here, we address this question using the self-organization of human mammary organoids as a model.
View Article and Find Full Text PDFWomen with germline BRCA1 mutations (BRCA1) have increased risk for hereditary breast cancer. Cancer initiation in BRCA1 is associated with premalignant changes in breast epithelium; however, the role of the epithelium-associated stromal niche during BRCA1-driven tumor initiation remains unclear. Here we show that the premalignant stromal niche promotes epithelial proliferation and mutant BRCA1-driven tumorigenesis in trans.
View Article and Find Full Text PDFBackground: A challenge in human mammary epithelial cell (HMEC) culture is sustaining the representation of competing luminal, myoepithelial, and progenitor lineages over time. As cells replicate in culture, myoepithelial cells come to dominate the composition of the culture with serial passaging. This drift in composition presents a challenge for studying luminal and progenitor cells, which are prospective cells of origin for most breast cancer subtypes.
View Article and Find Full Text PDFThe proclivity of certain pre-malignant and pre-invasive breast lesions to progress while others do not continues to perplex clinicians. Clinicians remain at a crossroads with effectively managing the high-risk patient subpopulation owing to the paucity of biomarkers that can adequately risk-stratify and inform clinical decisions that circumvent unnecessary administration of cytotoxic and invasive treatments. The immune system mounts the most important line of defense against tumorigenesis and progression.
View Article and Find Full Text PDFBlack/African-American (AA) women, relative to their White/European-American (EA) counterparts, experience disproportionately high breast cancer mortality. Central to this survival disparity, Black/AA women have an unequal burden of aggressive breast cancer subtypes, such as triple-negative breast cancer (ER/PR-, HER2-wild type; TNBC). While TNBC has been well characterized, recent studies have identified a highly aggressive androgen receptor (AR)-negative subtype of TNBC, quadruple-negative breast cancer (ER/PR-, HER2-wildtype, AR-; QNBC).
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) surpasses other BC subtypes as the most challenging to treat due to its lack of traditional BC biomarkers. Nearly 30% of TNBC patients express the androgen receptor (AR), and the blockade of androgen production and AR signaling have been the cornerstones of therapies for AR-positive TNBC. However, the majority of women are resistant to AR-targeted therapy, which is a major impediment to improving outcomes for the AR-positive TNBC subpopulation.
View Article and Find Full Text PDFThere is a plethora of recognized risk factors for breast cancer (BC) with poorly understood or speculative biological mechanisms. The lack of prevention options highlights the importance of understanding the mechanistic basis of cancer susceptibility and finding new targets for breast cancer prevention. Until now, we have understood risk and cancer susceptibility primarily through the application of epidemiology and assessing outcomes in large human cohorts.
View Article and Find Full Text PDFDysregulation of the transcriptional or translational machinery can alter the stoichiometry of multiprotein complexes and occurs in natural processes such as aging. Loss of stoichiometry has been shown to alter protein complex functions. We provide a protocol and associated code that use omics data to quantify these stoichiometric changes via statistical dispersion utilizing the interquartile range of expression values per grouping variable.
View Article and Find Full Text PDFDuring aging in the human mammary gland, luminal epithelial cells lose lineage fidelity by expressing markers normally expressed in myoepithelial cells. We hypothesize that loss of lineage fidelity is a general manifestation of epithelia that are susceptible to cancer initiation. In the present study, we show that histologically normal breast tissue from younger women who are susceptible to breast cancer, as a result of harboring a germline mutation in , or genes, exhibits hallmarks of accelerated aging.
View Article and Find Full Text PDFThe interaction between cells and their surrounding microenvironment has a crucial role in determining cell fate. In many pathological conditions, the microenvironment drives disease progression as well as therapeutic resistance. A number of challenges arise for researchers examining these cell-microenvironment interactions: (1) Tissue microenvironments are combinatorial and dynamic systems, and in pathological situations like cancer, microenvironments become infamously chaotic and highly heterogeneous.
View Article and Find Full Text PDFAdvocacy engagement has been at the forefront of National Cancer Institute (NCI) efforts to advance scientific discoveries and transform medical interventions. Nonetheless, the journey for advocates has been uneven. Case in Point: NCI publication affiliation rules of engagement pose unique equity challenges while raising questions about structural representation in biomedical research.
View Article and Find Full Text PDFThe enigma of why some premalignant or pre-invasive breast lesions transform and progress while others do not remains poorly understood. Currently, no radiologic or molecular biomarkers exist in the clinic that can successfully risk-stratify high-risk lesions for malignant transformation or tumor progression as well as serve as a minimally cytotoxic actionable target for at-risk subpopulations. Breast carcinogenesis involves a series of key molecular deregulatory events that prompt normal cells to bypass tumor-suppressive senescence barriers.
View Article and Find Full Text PDFCellular mechanical properties can reveal physiologically relevant characteristics in many cell types, and several groups have developed microfluidics-based platforms to perform high-throughput single-cell mechanical testing. However, prior work has performed only limited characterization of these platforms' technical variability and reproducibility. Here, we evaluate the repeatability performance of mechano-node-pore sensing, a single-cell mechanical phenotyping platform developed by our research group.
View Article and Find Full Text PDFAge is the major risk factor in most carcinomas, yet little is known about how proteomes change with age in any human epithelium. We present comprehensive proteomes comprised of >9,000 total proteins and >15,000 phosphopeptides from normal primary human mammary epithelia at lineage resolution from ten women ranging in age from 19 to 68 years. Data were quality controlled and results were biologically validated with cell-based assays.
View Article and Find Full Text PDFBackground: Exposure to polybrominated diphenyl ethers (PBDEs) may influence risk of developing post-menopausal breast cancer. Although mechanisms are poorly understood, epigenetic regulation of gene expression may play a role.
Objectives: To identify DNA methylation (DNAm) changes associated with PBDE serum levels and test the association of these biomarkers with breast cancer risk.