Publications by authors named "Mark L Brongersma"

Controlling exciton resonances in twodimensional materials can create dynamic flat optics.

View Article and Find Full Text PDF

Empirical investigation of the quintillion-scale, functionally diverse antibody repertoires that can be generated synthetically or naturally is critical for identifying potential biotherapeutic leads, yet remains burdensome. We present high-throughput nanophotonics- and bioprinter-enabled screening (HT-NaBS), a multiplexed assay for large-scale, sample-efficient, and rapid characterization of antibody libraries. Our platform is built upon independently addressable pixelated nanoantennas exhibiting wavelength-scale mode volumes, high-quality factors (high-Q) exceeding 5000, and pattern densities exceeding one million sensors per square centimeter.

View Article and Find Full Text PDF
Article Synopsis
  • Metasurfaces provide precise control over light at the nanoscale, enabling manipulation of various optical properties like phase, amplitude, and polarization.
  • They can also dynamically change light absorption and emission characteristics, broadening applications to areas such as optoelectronics, displays, and solar cells.
  • This Review synthesizes current research on metasurfaces specific to optoelectronic devices and highlights future directions for both academic and industrial research.
View Article and Find Full Text PDF
Article Synopsis
  • Active optical metasurfaces use flexible materials to manipulate light in new ways, allowing for innovative human-technology interactions.
  • Researchers developed soft metasurfaces that change shape through the swelling of conducting polymers, improving upon traditional methods that face trade-offs between tuning ability and optical loss.
  • Using a specific polymer, PEDOT:PSS, they achieved dynamic color tuning and efficient beam steering while operating at low voltages, making these metasurfaces promising for wearable technology.
View Article and Find Full Text PDF
Article Synopsis
  • Two-dimensional (2D) electronics like WS semiconductors need low contact resistance for optimal performance, but the interaction with Ni contacts isn't fully understood due to their misalignment.* -
  • Research shows that the size of Ni contacts affects the strain on WS devices, with longer contacts (1 μm) causing a significant reduction in performance compared to shorter ones (0.1 μm), leading to differing resistances.* -
  • Thermal annealing can help relieve strain in long-contact devices, enhancing performance, indicating that mechanical and thermal factors are key to improving 2D semiconductor devices.*
View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that certain strong-absorbing molecules can make live animals look clear, like when you see through water.
  • They discovered this happens because these molecules change how light travels in the body, making it easier to see inside.
  • This research could help find new ways to see inside living creatures for studying biology and medicine better.
View Article and Find Full Text PDF

Monolayer 2D semiconductors, such as WS, exhibit uniquely strong light-matter interactions due to exciton resonances that enable atomically thin optical elements. Similar to geometry-dependent plasmon and Mie resonances, these intrinsic material resonances offer coherent and tunable light scattering. Thus far, the impact of the excitons' temporal dynamics on the performance of such excitonic metasurfaces remains unexplored.

View Article and Find Full Text PDF

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost.

View Article and Find Full Text PDF

Understanding the ultrafast excitation and transport dynamics of plasmon-driven hot carriers is critical to the development of optoelectronics, photochemistry, and solar-energy harvesting. However, the ultrashort time and length scales associated with the behavior of these highly out-of-equilibrium carriers have impaired experimental verification of ab initio quantum theories. Here, we present an approach to studying plasmonic hot-carrier dynamics that analyzes the temporal waveform of coherent terahertz bursts radiated by photo-ejected hot carriers from designer nano-antennas with a broken symmetry.

View Article and Find Full Text PDF

The overall size of an optical system is limited by the volume of the components and the internal optical path length. To reach the limits of miniaturization, it is possible to reduce both component volume and path length by combining the concepts of metasurface flat optics and folded optics. In addition to their subwavelength component thickness, metasurfaces enable bending conventional folded geometries off axis beyond the law of reflection.

View Article and Find Full Text PDF

Excitons in two-dimensional transition metal dichalcogenides have a valley degree of freedom that can be optically manipulated for quantum information processing. Here, we integrate MoS monolayers with achiral silicon disk array metasurfaces to enhance and control valley-specific absorption and emission. Through the coupling to the metasurface electric and magnetic Mie modes, the intensity and lifetime of the emission of neutral excitons, trions, and defect bound excitons can be enhanced and shortened, respectively, while the spectral shape can be modified.

View Article and Find Full Text PDF

Exciton resonances in monolayer transition-metal dichalcogenides (TMDs) provide exceptionally strong light-matter interaction at room temperature. Their spectral line shape is critical in the design of a myriad of optoelectronic devices, ranging from solar cells to quantum information processing. However, disorder resulting from static inhomogeneities and dynamical fluctuations can significantly impact the line shape.

View Article and Find Full Text PDF

Effective photon management is critical to realize high power conversion efficiencies for thin crystalline silicon (c-Si) solar cells. Standard few-100-µm-thick bulk cells achieve light trapping with macroscopic surface textures covered by thin, continuous antireflection coatings. Such sizeable textures are challenging to implement on ultrathin cells.

View Article and Find Full Text PDF

Tunable metal-insulator-metal (MIM) Fabry-Pérot (FP) cavities that can dynamically control light enable novel sensing, imaging and display applications. However, the realization of dynamic cavities incorporating stimuli-responsive materials poses a significant engineering challenge. Current approaches rely on refractive index modulation and suffer from low dynamic tunability, high losses, and limited spectral ranges, and require liquid and hazardous materials for operation.

View Article and Find Full Text PDF

Phase contrast microscopy has played a central role in the development of modern biology, geology, and nanotechnology. It can visualize the structure of translucent objects that remains hidden in regular optical microscopes. The optical layout of a phase contrast microscope is based on a 4 f image processing setup and has essentially remained unchanged since its invention by Zernike in the early 1930s.

View Article and Find Full Text PDF
Article Synopsis
  • The integration of light manipulation and liquid control on optofluidics chips has led to significant advancements in various fields, including biology, medicine, and display technologies.
  • This research introduces a novel system where metasurfaces are engineered to respond sensitively to their surrounding liquid environment, allowing for dynamic adjustments in optical properties.
  • The development of an automated meta-optofluidic platform paves the way for innovative applications such as dynamic displays, imaging techniques, and advanced sensing methods.
View Article and Find Full Text PDF

Scientists are exploring new material designs to make smaller and denser pixel displays.

View Article and Find Full Text PDF

Semiconducting transition metal dichalcogenides (TMDs) are promising for flexible high-specific-power photovoltaics due to their ultrahigh optical absorption coefficients, desirable band gaps and self-passivated surfaces. However, challenges such as Fermi-level pinning at the metal contact-TMD interface and the inapplicability of traditional doping schemes have prevented most TMD solar cells from exceeding 2% power conversion efficiency (PCE). In addition, fabrication on flexible substrates tends to contaminate or damage TMD interfaces, further reducing performance.

View Article and Find Full Text PDF

Metasurface-based optical elements typically manipulate light waves by imparting space-variant changes in the amplitude and phase with a dense array of scattering nanostructures. The highly localized and low optical-quality-factor (Q) modes of nanostructures are beneficial for wavefront shaping as they afford quasi-local control over the electromagnetic fields. However, many emerging imaging, sensing, communication, display and nonlinear optics applications instead require flat, high-Q optical elements that provide substantial energy storage and a much higher degree of spectral control over the wavefront.

View Article and Find Full Text PDF

The success of semiconductor electronics is built on the creation of compact, low-power switching elements that offer routing, logic and memory functions. The availability of nanoscale optical switches could have a similarly transformative impact on the development of dynamic and programmable metasurfaces, optical neural networks and quantum information processing. Phase-change materials are uniquely suited to enable their creation as they offer high-speed electrical switching between amorphous and crystalline states with notably different optical properties.

View Article and Find Full Text PDF

Layered semiconducting transition metal dichalcogenides (TMDs) are promising materials for high-specific-power photovoltaics due to their excellent optoelectronic properties. However, in practice, contacts to TMDs have poor charge carrier selectivity, while imperfect surfaces cause recombination, leading to a low open-circuit voltage () and therefore limited power conversion efficiency (PCE) in TMD photovoltaics. Here, we simultaneously address these fundamental issues with a simple MoO ( ≈ 3) surface charge-transfer doping and passivation method, applying it to multilayer tungsten disulfide (WS) Schottky-junction solar cells with initially near-zero .

View Article and Find Full Text PDF

The ability of two nearly-touching plasmonic nanoparticles to squeeze light into a nanometer gap has provided a myriad of fundamental insights into light-matter interaction. In this work, we construct a nanoelectromechanical system (NEMS) that capitalizes on the unique, singular behavior that arises at sub-nanometer particle-spacings to create an electro-optical modulator. Using in situ electron energy loss spectroscopy in a transmission electron microscope, we map the spectral and spatial changes in the plasmonic modes as they hybridize and evolve from a weak to a strong coupling regime.

View Article and Find Full Text PDF
Article Synopsis
  • Direct laser writing (DLW) is a technique that creates precise 3D optical components, but is limited by the properties of the photopolymer used; researchers introduced the SCRIBE method, allowing for enhanced control over the refractive index in the materials.* ! -
  • SCRIBE enables the creation of advanced optical elements like the world's smallest Luneburg lens and achromatic doublets in a single printing step, improving efficiency and performance in photonic designs.* ! -
  • The method also demonstrates the ability to integrate multiple optical components, such as lenses and waveguides, into a compact photonic circuit, paving the way for more sophisticated optical systems.* !
View Article and Find Full Text PDF

The ability to detect the full-Stokes polarization of light is vital for a variety of applications that often require complex and bulky optical systems. Here, we report an on-chip polarimeter comprising four metasurface-integrated graphene-silicon photodetectors. The geometric chirality and anisotropy of the metasurfaces result in circular and linear polarization-resolved photoresponses, from which the full-Stokes parameters, including the intensity, orientation, and ellipticity of arbitrarily polarized incident infrared light (1550 nm), can be obtained.

View Article and Find Full Text PDF

Spatial light modulators are essential optical elements in applications that require the ability to regulate the amplitude, phase and polarization of light, such as digital holography, optical communications and biomedical imaging. With the push towards miniaturization of optical components, static metasurfaces are used as competent alternatives. These evolved to active metasurfaces in which light-wavefront manipulation can be done in a time-dependent fashion.

View Article and Find Full Text PDF