Publications by authors named "Mark Kronenberg"

Regulator of G protein signaling 5 (RGS5) is a GTPase activator for heterotrimeric G-protein α-subunits, shown to be a marker of pericytes. Bone marrow stromal cell population (BMSCs) is heterogeneous. Populations of mesenchymal progenitors, cells supportive of hematopoiesis, and stromal cells regulating bone remodeling have been recently identified.

View Article and Find Full Text PDF

Enamel is secreted by ameloblasts derived from tooth epithelial stem cells (SCs). Humans cannot repair or regenerate enamel, due to early loss of tooth epithelial SCs. Contrarily in the mouse incisors, epithelial SCs are maintained throughout life and endlessly generate ameloblasts, and thus enamel.

View Article and Find Full Text PDF

Laser-capture microdissection (LCM) coupled to downstream RNA analysis poses unique difficulties for the evaluation of mineralized tissues. A rapid protocol was thus developed to enable sufficient integrity of bone and cartilage tissue for reliable sectioning, while minimizing RNA loss associated with prolonged decalcification and purification steps. Specifically, the protocol involves pump-assisted, cardiac perfusion-fixation with paraformaldehyde, and moderate digestion of LCM-acquired tissue with proteinase K followed by DNase treatment and separation of RNA using magnetic beads.

View Article and Find Full Text PDF

Limb synovial joints are composed of distinct tissues, but it is unclear which progenitors produce those tissues and how articular cartilage acquires its functional postnatal organization characterized by chondrocyte columns, zone-specific cell volumes and anisotropic matrix. Using novel Gdf5 (Gdf5-CE), Prg4-CE and Dkk3-CE mice mated to R26-Confetti or single-color reporters, we found that knee joint progenitors produced small non-migratory progenies and distinct local tissues over prenatal and postnatal time. Stereological imaging and quantification indicated that the columns present in juvenile-adult tibial articular cartilage consisted of non-daughter, partially overlapping lineage cells, likely reflecting cell rearrangement and stacking.

View Article and Find Full Text PDF

Unlabelled: Purpose of this study: To elucidate the origin of cell populations that contribute to rotator cuff healing, we developed a mouse surgical model where a full-thickness, central detachment is created in the supraspinatus.

Materials And Methods: Three different inducible Cre transgenic mice with Ai9-tdTomato reporter expression (PRG4-9, αSMA-9, and AGC-9) were used to label different cell populations in the shoulder. The defect was created surgically in the supraspinatus.

View Article and Find Full Text PDF

We have carried out fate mapping studies using Osterix-EGFPCre and Osterix-CreERt animal models and found Cre reporter expression in many different cell types that make up the bone marrow stroma. Constitutive fate mapping resulted in the labeling of different cellular components located throughout the bone marrow, whereas temporal fate mapping at E14.5 resulted in the labeling of cells within a region of the bone marrow.

View Article and Find Full Text PDF
Article Synopsis
  • Adult mesenchymal progenitor cells may play a crucial role in regenerative medicine, but their true identity and lineage in vivo remain unclear.
  • Research hypothesizes that cells utilizing a smooth muscle α-actin promoter (αSMA) are adult bone tissue progenitors, with experiments confirming their ability to differentiate from progenitor cells to mature bone cells.
  • Through in vivo lineage tracing and fracture-healing models, the study demonstrates that αSMA(+) cells are integral to bone remodeling and regeneration, transitioning into mature osteoblasts during the healing process.
View Article and Find Full Text PDF

Background: Directed differentiation of human induced pluripotent stem cells (hiPSC) into functional, region-specific neural cells is a key step to realizing their therapeutic promise to treat various neural disorders, which awaits detailed elucidation.

Methodology/principal Findings: We analyzed neural differentiation from various hiPSC lines generated by others and ourselves. Although heterogeneity in efficiency of neuroepithelial (NE) cell differentiation was observed among different hiPSC lines, the NE differentiation process resembles that from human embryonic stem cells (hESC) in morphology, timing, transcriptional profile, and requirement for FGF signaling.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a new method for identifying and isolating murine bone marrow derived mesenchymal stem cells (BMSCs) using a transgenic approach that incorporates Twist2-Cre and Cre reporter mice.
  • The researchers successfully identified a specific cell population (T2C+) early in cell culture, which shows strong markers for BMSC characteristics and can differentiate into various skeletal cell types.
  • In practical applications, the T2C+ cells were effective in promoting bone repair in a calvarial defect model, demonstrating their potential therapeutic value in regenerative medicine.
View Article and Find Full Text PDF

Here we determine the Fibroblast Growth Factor-2 (FGF2) dependency of the time course of changes in bone mass in female mice. This study extends our earlier reports that knockout of the FGF2 gene (Fgf2) caused low turnover bone loss in Fgf2(-/-) male mice by examining bone loss with age in Fgf2(-/-) female mice, and by assessing whether reduced bone formation is associated with differentiation of bone marrow stromal cells (BMSCs) towards the adipocyte lineage. Bone mineral density (BMD) was similar in 3-month-old female Fgf2(+/+) and Fgf2(-/-) mice but was significantly reduced as early as 5 months of age in Fgf2(-/-) mice.

View Article and Find Full Text PDF

We analyzed proliferation and differentiation of calvarial osteoblasts derived from Msx2 deficient in comparison with wild type mice. Calvarial osteoblast cultures from five to eight days old Msx2 deficient, heterozygous and wild type mice were studied for difference in proliferation and differentiation. Proliferation rate was assessed by counting cell number, BrdU and Calcein AM labeling.

View Article and Find Full Text PDF

Osteocytes represent the most abundant cellular component of mammalian bones with important functions in bone mass maintenance and remodeling. To elucidate the differential gene expression between osteoblasts and osteocytes we completed a comprehensive analysis of their gene profiles. Selective identification of these two mature populations was achieved by utilization of visual markers of bone lineage cells.

View Article and Find Full Text PDF

To address the functions of FGFR2 and FGFR3 signaling during mandibular skeletogenesis, we over-expressed in the developing chick mandible, replication-competent retroviruses carrying truncated FGFR2c or FGFR3c that function as dominant negative receptors (RCAS-dnFGFR2 and RCAS-dnFGFR3). Injection of RCAS-dnFGFR3 between HH15 and 20 led to reduced proliferation, increased apoptosis, and decreased differentiation of chondroblasts in Meckel's cartilage. These changes resulted in the formation of a hypoplastic mandibular process and truncated Meckel's cartilage.

View Article and Find Full Text PDF

Our laboratory and others have shown that overexpression of Dlx5 stimulates osteoblast differentiation. Dlx5(-/-)/Dlx6(-/-) mice have more severe craniofacial and limb defects than Dlx5(-/-), some of which are potentially due to defects in osteoblast maturation. We wished to investigate the degree to which other Dlx genes compensate for the lack of Dlx5, thus allowing normal development of the majority of skeletal elements in Dlx5(-/-) mice.

View Article and Find Full Text PDF

The aim of this paper is identification of regulatory sequences downstream of -1683 base pairs (bp) in the rat Col1a1 promoter important for expression in osteoblasts. Previous findings suggest that a rat Col1a1 gene fragment extending from -1719 to + 115 bp linked to the chloramphenicol acetyl transferase (CAT) reporter gene (ColCAT1719) is highly and selectively expressed in osteoblasts. Three internal deletions within the ColCAT1719 construct were generated and stably transfected into ROS 17/2.

View Article and Find Full Text PDF

The Cre/loxP recombination system can be used to circumvent many of the limitations of generalized gene ablation in mice. Here we present the development and characterization of transgenic mice in which Cre recombinase has been targeted to cells of the osteoblast lineage with 2.3 kb (Col 2.

View Article and Find Full Text PDF

We have previously demonstrated that a modified U1 snRNA inhibits expression of a number of targeted transgenes. Here we exploit the ability of the modified U1 snRNA to inhibit endogenous gene expression and define the mechanism responsible for this inhibitory action. MC3T3-E1 cells stably transfected with U1 anti-Cbfa1 show a change of morphology from polygonal to fibroblast-like cells.

View Article and Find Full Text PDF

Aim: As quantitative and spatial analyses of promoter reporter constructs are not easily performed in intact bone, we designed a reporter gene specific to bone, which could be analyzed both visually and quantitatively by using chloramphenicol acetyltransferase (CAT) and a cyan version of green fluorescent protein (GFPcyan), driven by a 2.3-kb fragment of the rat collagen promoter (Col2.3).

View Article and Find Full Text PDF

Aim: To study the effect of Dlx5 introduced by replication-competent avian splice-acceptor (RCAS) in mouse calvarial and bone marrow stromal cells, and to demonstrate that RCAS vector can be a useful system for studying gene expression in mammalian cells derived from Beta-AKE mouse.

Method: Beta-AKE mouse used in experiments is a transgenic mouse line expressing the receptor for the Bryant polymerase subgroup A of RCAS vector (RCAS-BP(A) vector). Primary calvarial osteoblast cultures were obtained from 7-day-old Beta-AKE mice.

View Article and Find Full Text PDF

Our laboratory and others have shown that a homeodomain protein binding site plays an important role in transcription of the Collal gene in osteoblasts. This suggests that homeodomain proteins have an important role in osteoblast differentiation. We have investigated the role of Dlx5 in osteoblastic differentiation.

View Article and Find Full Text PDF

The apical ectodermal ridge (AER) is a specialized ectodermal region essential for limb outgrowth. Msx2 expression patterns in limb development strongly suggest an important role for Msx2 in the AER. Our previous studies identified a 348-bp fragment of the chicken Msx2 gene with AER enhancer activity.

View Article and Find Full Text PDF