Publications by authors named "Mark Kreis"

We have used both a rat orthotopic hepatocellular carcinoma model and a mouse allograft tumor model to study liver tumor ablation with nanosecond pulsed electric fields (nsPEF). We confirm that nsPEF treatment triggers apoptosis in rat liver tumor cells as indicated by the appearance of cleaved caspase 3 and 9 within two hours after treatment. Furthermore we provide evidence that nsPEF treatment leads to the translocation of calreticulin (CRT) to the cell surface which is considered a damage-associated molecular pattern indicative of immunogenic cell death.

View Article and Find Full Text PDF

This nanoelectroablation therapy effectively treats subdermal murine allograft tumors, autochthonous basal cell carcinoma (BCC) tumors in Ptch1+/-K14-Cre-ER p53 fl/fl mice, and UV-induced melanomas in C57/BL6 HGF/SF mice. Here, we described the first human trial of this modality. We treated 10 BCCs on three subjects with 100-1000 electric pulses 100 ns in duration, 30 kV/cm in amplitude, applied at 2 pulses per second.

View Article and Find Full Text PDF

The cellular response to 100 ns pulsed electric fields (nsPEF) exposure includes the formation of transient nanopores in the plasma membrane and organelle membranes, an immediate increase in intracellular Ca(2+), an increase in reactive oxygen species (ROS), DNA fragmentation and caspase activation. 100 ns, 30 kV/cm nsPEF stimulates an increase in ROS proportional to the pulse number. This increase is inhibited by the anti-oxidant, Trolox, as well as the presence of Ca(2+) chelators in the intracellular and extracellular media.

View Article and Find Full Text PDF

We have identified an effective nanoelectroablation therapy for treating pancreatic carcinoma in a murine xenograft model. This therapy initiates apoptosis in a nonthermal manner by applying low energy electric pulses 100 ns long and 30 kV/cm in amplitude to the tumor. We first identified the minimum pulse number required for complete ablation by treating 30 tumors.

View Article and Find Full Text PDF

When skin tumors are exposed to non-thermal, low energy, nanosecond pulsed electric fields (nsPEF), apoptosis is initiated both in vitro and in vivo. This nanoelectroablation therapy has already been proven effective in treating subdermal murine allograft tumors. We wanted to determine if this therapy would be equally effective in the treatment of autochthonous BCC tumors in Ptch1(+/-)K14-Cre-ER p53 fl/fl mice.

View Article and Find Full Text PDF

Non-thermal nanoelectroablation therapy completely ablates UV-induced murine melanomas. C57/BL6-HGF/SF transgenic mice were exposed to UV radiation as pups and began to develop visible melanomas 5-6 months later. We have treated 27 of these melanomas in 14 mice with nanosecond pulsed electric field (nsPEF) therapy delivering 2000 electric pulses each 100 ns long and 30 kV/cm at a rate of 5-7 pulses per second.

View Article and Find Full Text PDF

We have identified a new, nanosecond pulsed electric field (nsPEF) therapy capable of eliminating murine melanomas located in the skin with a single treatment. When these optimized parameters are used, nsPEFs initiate apoptosis without hyperthermia. We have developed new suction electrodes that are compatible with human skin and have applied them to a xenograft nude mouse melanoma model system to identify the optimal field strength, pulse frequency and pulse number for the treatment of murine melanomas.

View Article and Find Full Text PDF