Hematology Am Soc Hematol Educ Program
December 2024
Anemia is a hallmark of chronic kidney disease (CKD), worsens with disease progression, and profoundly affects a patient's well-being. Major pathogenic factors are inadequate kidney erythropoietin (EPO) production and absolute and functional iron deficiency. The 2 mainstays of current anemia treatment are a) replacement therapy with recombinant EPO or 1 of its glycosylated derivatives, administered subcutaneously or intravenously, and b) intravenous (IV) iron injections.
View Article and Find Full Text PDFPurpose Of Review: Over the last century, the diseases associated with macrocytic anemia have been changing with more patients currently having hematological diseases including malignancies and myelodysplastic syndrome. The intracellular mechanisms underlying the development of anemia with macrocytosis can help in understanding normal erythropoiesis. Adaptations to these diseases involving erythroid progenitor and precursor cells lead to production of fewer but larger red blood cells, and understanding these mechanisms can provide information for possible treatments.
View Article and Find Full Text PDFBoth insufficient kidney production of erythropoietin and inflammation-mediated reduction of transferrin-bound iron are major factors in anemia of chronic kidney disease. Improved therapies for anemia in chronic kidney disease may involve modifying regulators of erythropoiesis and iron availability. Olivari et al.
View Article and Find Full Text PDFThe erythroid terminal differentiation program couples sequential cell divisions with progressive reductions in cell size. The erythropoietin receptor (EpoR) is essential for erythroblast survival, but its other functions are not well characterized. Here we use Epor mouse erythroblasts endowed with survival signaling to identify novel non-redundant EpoR functions.
View Article and Find Full Text PDFDrug resistance (DR) is a phenomenon characterized by the tolerance of a disease to pharmaceutical treatment. In cancer patients, DR is one of the main challenges that limit the therapeutic potential of the existing treatments. Therefore, overcoming DR by restoring the sensitivity of cancer cells would be greatly beneficial.
View Article and Find Full Text PDFThe RBC storage lesion is a multiparametric response that occurs during storage at 4°C, but its impact on transfused patients remains unclear. In studies of the RBC storage lesion, the temperature transition from cold storage to normal body temperature that occurs during transfusion has received limited attention. We hypothesized that multiple deleterious events might occur in this period of increasing temperature.
View Article and Find Full Text PDFThe hormone erythropoietin (Epo) is required for erythropoiesis, yet its molecular mechanism of action remains poorly understood, particularly with respect to chromatin dynamics. To investigate how Epo modulates the erythroid epigenome, we performed epigenetic profiling using an ex vivo murine cell system that undergoes synchronous erythroid maturation in response to Epo stimulation. Our findings define the repertoire of Epo-modulated enhancers, illuminating a new facet of Epo signaling.
View Article and Find Full Text PDFIron stores assuring optimal efficacy/safety for erythropoiesis are unknown in the dialysis population. Using multicenter trial data, we related safety profiles, erythropoiesis-stimulating agent (ESA), and intravenous iron dosing to achieved iron stores in 441 subjects randomized 2 : 1 to ferric citrate or active control as their phosphate binder over 52 weeks. Intravenous iron was given at each site's discretion if ferritin ≤ 1,000 ng/mL and transferrin saturation ≤ 30%.
View Article and Find Full Text PDFAs they mature into erythrocytes during normal erythropoiesis, reticulocytes lose surface transferrin receptors before or concurrently with reticulin. Exosome release accounts for most of the loss of transferrin receptors from reticulocytes. During erythropoietic stress, reticulocytes are released early from hematopoietic tissues and have increased reticulin staining and transferrin receptors.
View Article and Find Full Text PDFMultiple myeloma (MM) infiltrates bone marrow and causes anemia by disrupting erythropoiesis, but the effects of marrow infiltration on anemia are difficult to quantify. Marrow biopsies of newly diagnosed MM patients were analyzed before and after four 28-day cycles of non-erythrotoxic remission induction chemotherapy. Complete blood cell counts and serum paraprotein concentrations were measured at diagnosis and before each chemotherapy cycle.
View Article and Find Full Text PDFRed blood cell production rates increase rapidly following blood loss or hemolysis, but the expansion of erythropoiesis in these anemic states is tightly regulated such that rebound polycythemia does not occur. The erythroid cells that respond to erythropoietic stimulation or suppression are the progenitor stages of burst-forming units-erythroid (BFU-Es) and colony-forming units-erythroid (CFU-Es). Results from an early study of the changes in the size, location, and cell cycling status of BFU-E and CFU-E populations in mice under normal conditions, erythropoietic stimulation, and erythropoietic suppression are used as reference points to review subsequent developments related to erythroid progenitor populations and regulation of their size.
View Article and Find Full Text PDFImproved understanding of the oxygen-dependent regulation of erythropoiesis has provided new insights into the pathogenesis of anaemia associated with renal failure and has led to the development of novel therapeutic agents for its treatment. Hypoxia-inducible factor (HIF)-2 is a key regulator of erythropoiesis and iron metabolism. HIF-2 is activated by hypoxic conditions and controls the production of erythropoietin by renal peritubular interstitial fibroblast-like cells and hepatocytes.
View Article and Find Full Text PDFBackground: Phosphate binders are the cornerstone of hyperphosphatemia management in dialysis patients. Ferric citrate is an iron-based oral phosphate binder that effectively lowers serum phosphorus levels.
Study Design: 52-week, open-label, phase 3, randomized, controlled trial for safety-profile assessment.
Ferric citrate (FC) is a phosphate binder with shown efficacy and additional effects on iron stores and use of intravenous (iv) iron and erythropoiesis-stimulating agents (ESAs). We provide detailed analyses of changes in iron/hematologic parameters and iv iron/ESA use at time points throughout the active control period of a phase 3 international randomized clinical trial. In all, 441 subjects were randomized (292 to FC and 149 to sevelamer carbonate and/or calcium acetate [active control (AC)]) and followed for 52 weeks.
View Article and Find Full Text PDFPatients on dialysis require phosphorus binders to prevent hyperphosphatemia and are iron deficient. We studied ferric citrate as a phosphorus binder and iron source. In this sequential, randomized trial, 441 subjects on dialysis were randomized to ferric citrate or active control in a 52-week active control period followed by a 4-week placebo control period, in which subjects on ferric citrate who completed the active control period were rerandomized to ferric citrate or placebo.
View Article and Find Full Text PDFErythropoiesis, the bone marrow production of erythrocytes by the proliferation and differentiation of hematopoietic cells, replaces the daily loss of 1% of circulating erythrocytes that are senescent. This daily output increases dramatically with hemolysis or hemorrhage. When erythrocyte production rate of erythrocytes is less than the rate of loss, chronic anemia develops.
View Article and Find Full Text PDFBackground: Most dialysis patients require phosphate binders to control hyperphosphatemia. Ferric citrate has been tested in phase 2 trials as a phosphate binder. This trial was designed as a dose-response and efficacy trial.
View Article and Find Full Text PDF