In kraft paper mills, supersonic steam jets are used to remove deposits that build up on the heat exchanger tubes in the recovery boiler. In this study, the fracture toughness and work of fracture, , of simulated boiler deposits were measured at temperatures up to 500 °C to determine the optimal conditions for deposit removal. The model deposits experienced an important brittle to ductile transition at ~450 °C.
View Article and Find Full Text PDFThe addition of short fibers has been experimentally observed to slow the stress relaxation of viscoelastic polymers, producing a change in the relaxation time constant. Our recent study attributed this effect of fibers on stress relaxation behavior to the interfacial shear stress transfer at the fiber-matrix interface. This model explained the effect of fiber addition on stress relaxation without the need to postulate structural changes at the interface.
View Article and Find Full Text PDFNatural fibers can be attractive reinforcing materials in thermosetting polymers due to their low density and high specific mechanical properties. Although the research effort in this area has grown substantially over the last 20 years, manufacturing technologies to make use of short natural fibers in high volume fraction composites; are still limited. Natural fibers, after retting and preprocessing, are discontinuous and easily form entangled bundles.
View Article and Find Full Text PDFAlthough it has been experimentally shown that the addition of short-fibers slows the stress relaxation process in composites, the underlying phenomenon is complex and not well understood. Previous studies have proposed that fibers slow the relaxation process by either hindering the movement of nearby polymeric chains or by creating additional covalent bonds at the fiber-matrix interface that must be broken before bulk relaxation can occur. In this study, we propose a simplified analytical model that explicitly accounts for the influence of polymer viscoelasticity on shear stress transfer to the fibers.
View Article and Find Full Text PDFA new approach for the rapid destruction of human waste using smouldering combustion is presented. Recently, self-sustaining smouldering combustion was shown to destroy the organic component of simulated human solid waste and dog faeces resulting in the sanitization of all pathogens using a batch process (Yermán et al., 2015).
View Article and Find Full Text PDF