Publications by authors named "Mark Kopnitsky"

Introduction: Early identification of sepsis is critical as early treatment improves outcomes. We sought to identify threshold values of secretory phospholipase A2 (sPLA2)-IIA that predict sepsis and bacterial infection compared to nonseptic controls in an emergency department (ED) population.

Materials And Methods: This is a prospective cohort of consenting adult patients who met two or more systemic inflammatory response syndrome (SIRS) criteria with clinical diagnosis of infectious source likely (septic patients).

View Article and Find Full Text PDF

Bloodstream infections that progress to septic shock are responsible for hundreds of thousands of deaths each year, and are associated with significant healthcare costs. Recent studies have shown that a member of the secreted phospholipase protein family, termed sPLA2-IIA, may play a role during the innate immune response to bacterial infections, and is elevated in the plasma of septic patients. In this report, the feasibility of a simple microsieve-based sPLA2-IIA detection immunoassay was explored.

View Article and Find Full Text PDF

The intrinsic properties of silicon microsieves, such as an optically flat surface, high overall porosity, and low flow resistance have led to an increasing number of biotechnology applications. In this report, the feasibility of creating a microsieve-based immunoassay platform was explored. Microsieves containing 5μm pores were coupled with poly-acrylic acid chains, and then mounted into a plastic holder to enable rapid reagent exchanges via a wicking mechanism.

View Article and Find Full Text PDF

Background: Measurement of pathogen DNA polymerase activity by enzymatic template generation and amplification (ETGA) has shown promise in detecting pathogens in bloodstream infection (BSI). We perform an in-depth analysis of patients with clinical BSI enrolled in ETGA feasibility experiments.

Methods: In addition to hospital blood cultures, 1 study aerobic culture bottle was drawn from patients with suspected BSI.

View Article and Find Full Text PDF

Background: Transfusion of bacterially contaminated platelet concentrates (PCs) can result in serious health consequences for the affected patient. Before being released from blood banking facilities, PCs are routinely screened for bacterial contamination by culture-based tests. However, culture-based PC screening methods require extended holding and incubation periods and are prone to false-negative results due to sampling error.

View Article and Find Full Text PDF

Surveillance of bloodstream infections (BSI) is a high priority within the hospital setting. Broth-based blood cultures are the current gold standard for detecting BSI, however they can require lengthy incubation periods prior to detection of positive samples. We set out to demonstrate the feasibility of using enzymatic template generation and amplification (ETGA)-mediated measurement of DNA polymerase activity to detect microbes from clinical blood cultures.

View Article and Find Full Text PDF

The Centers for Disease Control and Prevention currently recommends a 2-tier serologic approach to Lyme disease laboratory diagnosis, comprised of an initial serum enzyme immunoassay (EIA) for antibody to Borrelia burgdorferi followed by supplementary IgG and IgM Western blotting of EIA-positive or -equivocal samples. Western blot accuracy is limited by subjective interpretation of weakly positive bands, false-positive IgM immunoblots, and low sensitivity for detection of early disease. We developed an objective alternative second-tier immunoassay using a multiplex microsphere system that measures VlsE1-IgG and pepC10-IgM antibodies simultaneously in the same sample.

View Article and Find Full Text PDF

Detection of antinuclear (ANA) and antineutrophil cytoplasmic (ANCA) antibodies is extensively used for establishing a diagnosis in patients with clinical features suggestive of autoimmune disorders. The most common methods for the identification of positive patients' sera for ANA or ANCA are indirect immunofluorescence (IIF) and ELISA-based procedures. Considerable effort has been made in developing simpler automated assays for routine laboratory use.

View Article and Find Full Text PDF