Publications by authors named "Mark K Donnelly"

Emerging evidence has suggested that patients experiencing aneurysmal subarachnoid hemorrhage (aSAH) develop vascular dysregulation as a potential contributor to poor outcomes. Preclinical studies have implicated the novel microvascular constrictor, 20-hydroxyeicosatetraenoic acid (20-HETE) in aSAH pathogenesis, yet the translational relevance of 20-HETE in patients with aSAH is largely unknown. The goal of this research was to determine the relationship between 20-HETE cerebrospinal fluid (CSF) levels, gene variants in 20-HETE synthesis, and acute/long-term aSAH outcomes.

View Article and Find Full Text PDF

Preclinical studies show that epoxyeicosatrienoic acids (EETs) regulate cerebrovascular tone and protect against cerebral ischemia. We investigated the relationship between polymorphic genes involved in EET biosynthesis/metabolism, cytochrome P450 (CYP) eicosanoid levels, and outcomes in 363 patients with aneurysmal subarachnoid hemorrhage (aSAH). Epoxyeicosatrienoic acids and dihydroxyeicosatetraenoic acid (DHET) cerebrospinal fluid (CSF) levels, as well as acute outcomes defined by delayed cerebral ischemia (DCI) or clinical neurologic deterioration (CND), were assessed over 14 days.

View Article and Find Full Text PDF

Liposomes, such as pegylated-liposomal CKD-602 (S-CKD602), undergo catabolism by macrophages and dendritic cells (DCs) of the reticuloendothelial system (RES). The relationship between plasma and tumor disposition of S-CKD602 and RES was evaluated in mice bearing A375 melanoma or SKOV-3 ovarian xenografts. Area under the concentration-time curves (AUCs) of liposomal encapsulated, released, and sum total (encapsulated + released) CKD-602 in plasma, tumor, and tumor extracellular fluid (ECF) were estimated.

View Article and Find Full Text PDF

Currently, there are few biomarkers to predict the risk of symptomatic cerebral vasospasm (SV) in subarachnoid hemorrhage (SAH) patients. Mono and dioxygenated arachidonic acid metabolites, involved in the pathogenesis of ischemic injury, may serve as indicators of SV. This study developed a quantitative UPLC-MS/MS method to simultaneously measure hydroxyeicosatetraenoic acid (HETE), dihydroxyeicosatrienoic acid (DiHETrE), and epoxyeicosatrienoic acid (EET) metabolites of arachidonic acid in cerebrospinal fluid (CSF) samples of SAH patients.

View Article and Find Full Text PDF