In 2014, enterovirus D68 (EV-D68), previously associated primarily with mild respiratory illness, caused a large outbreak of severe respiratory illness and, in rare instances, paralysis. We compared the viral binding and replication of eight recent EV-D68 clinical isolates collected both before and during the 2014 outbreak and the prototype Fermon strain from 1962 in cultured HeLa cells and differentiated human primary bronchial epithelial cells (BEC) to understand the possible reasons for the change in virus pathogenicity. We selected pairs of closely related isolates from the same phylogenetic clade that were associated with severe vs.
View Article and Find Full Text PDFMembers of rhinovirus C (RV-C) species are more likely to cause wheezing illnesses and asthma exacerbations compared with other rhinoviruses. The cellular receptor for these viruses was heretofore unknown. We report here that expression of human cadherin-related family member 3 (CDHR3) enables the cells normally unsusceptible to RV-C infection to support both virus binding and replication.
View Article and Find Full Text PDFAnn Allergy Asthma Immunol
November 2013
Background: Human rhinoviruses (HRVs) are the most common cause of asthma exacerbations. In airway epithelial cells, the primary site of HRV infection, decreased production of interferons (IFNs) may result in greater susceptibility to HRV and worsened symptoms. Thus, exogenous IFN could supplement the innate immune response and provide a treatment for virus-induced asthma exacerbations.
View Article and Find Full Text PDFBackground: Children with allergic asthma have more frequent and severe human rhinovirus (HRV)-induced wheezing and asthma exacerbations through unclear mechanisms.
Objective: We sought to determine whether increased high-affinity IgE receptor (FcεRI) expression and cross-linking impairs innate immune responses to HRV, particularly in allergic asthmatic children.
Methods: PBMCs were obtained from 44 children, and surface expression of FcεRI on plasmacytoid dendritic cells (pDCs), myeloid dendritic cells, monocytes, and basophils was assessed by using flow cytometry.
SIRT6 is a member of the evolutionarily conserved sirtuin family of NAD(+)-dependent protein deacetylases and functions in genomic stability and transcriptional control of glucose metabolism. Early reports suggested that SIRT6 performs ADP-ribosylation, whereas more recent studies have suggested that SIRT6 functions mainly as a histone deacetylase. Thus, the molecular functions of SIRT6 remain uncertain.
View Article and Find Full Text PDFEmerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation.
View Article and Find Full Text PDF