Publications by authors named "Mark Jf Brown"

In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant , the negative consequences of fungal infections () can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, utilising chemical 'sickness cues' emitted by pupae.

View Article and Find Full Text PDF
Article Synopsis
  • Diseases can change how bees search for flowers and gather food, which is important for their survival.
  • Bees can spread diseases while visiting flowers, and some plants might help or hurt how easily these diseases spread.
  • Having a variety of flowers available can help bees stay healthy and reduce the negative effects of diseases on them.
View Article and Find Full Text PDF

Several viruses found in the Western honey bee (Apis mellifera) have recently been detected in other bee species, raising the possibility of spill-over from managed to wild bee species. Alternatively, these viruses may be shared generalists across flower-visiting insects. Here we explore the former hypothesis, pointing out weaknesses in the current evidence, particularly in relation to deformed wing virus (DWV), and highlighting research areas that may help test it.

View Article and Find Full Text PDF

Background: Understanding polyphenism, the ability of a single genome to express multiple morphologically and behaviourally distinct phenotypes, is an important goal for evolutionary and developmental biology. Polyphenism has been key to the evolution of the Hymenoptera, and particularly the social Hymenoptera where the genome of a single species regulates distinct larval stages, sexual dimorphism and physical castes within the female sex. Transcriptomic analyses of social Hymenoptera will therefore provide unique insights into how changes in gene expression underlie such complexity.

View Article and Find Full Text PDF