Although experimental and theoretical efforts have been applied to globally map genetic interactions, we still do not understand how gene-gene interactions arise from the operation of biomolecular networks. To bridge the gap between empirical and computational studies, we i, quantitatively measured genetic interactions between ∼185,000 metabolic gene pairs in Saccharomyces cerevisiae, ii, superposed the data on a detailed systems biology model of metabolism and iii, introduced a machine-learning method to reconcile empirical interaction data with model predictions. We systematically investigated the relative impacts of functional modularity and metabolic flux coupling on the distribution of negative and positive genetic interactions.
View Article and Find Full Text PDFAs computer systems have become more complex, numerous competing approaches have been proposed for these systems to self-configure, self-manage, self-repair, etc. such that human intervention in their operation can be minimized. In ubiquitous systems, this has always been a central issue as well.
View Article and Find Full Text PDF