Photodynamic therapy (PDT) is generally based on the generation of highly reactive singlet oxygen ((1)O(2)) through interactions of photosensitizer, light, and oxygen ((3)O(2)). These three components are highly interdependent and dynamic, resulting in variable temporal and spatial (1)O(2) dose deposition. Robust dosimetry that accounts for this complexity could improve treatment outcomes.
View Article and Find Full Text PDFTo date, singlet oxygen ((1)O(2)) luminescence (SOL) detection was predictive of photodynamic therapy (PDT) treatment responses both in vitro and in vivo, but accurate quantification is challenging. In particular, the early and strongest part of the time-resolved signal (500-2000ns) is difficult to separate from confounding sources of luminescence and system noise, and so is normally gated out. However, the signal dynamics change with oxygen depletion during PDT, so that this time gating biases the (1)O(2) measurements.
View Article and Find Full Text PDFNucleic acid photodynamic molecular beacons (PMBs) are a class of activatable photosensitizers that increase singlet oxygen generation upon binding a specific target sequence. Normally, PMBs are functionalized with multiple solution-phase labeling and purification steps. Here, we make use of a flexible solid-phase approach for completely automated synthesis of PMBs.
View Article and Find Full Text PDFThe development of activatable photodynamic therapy (PDT) has demonstrated a utility for effective photosensitizer quenchers. However, little is known quantitatively about Forster resonance energy transfer (FRET) quenching of photosensitizers, even though these quenchers are versatile and readily available. To characterize FRET deactivation of singlet oxygen generation, we attached various quenchers to the photosensitizer pyropheophorbide-alpha (Pyro) using a lysine linker.
View Article and Find Full Text PDFFirefly luciferase catalyzes the emission of light from luciferin in the presence of oxygen and adenosine triphosphate. This bioluminescence is commonly employed in imaging mode to monitor tumor growth and treatment responses in vivo. A potential concern is that, since solid tumors are often hypoxic, either constitutively and/or as a result of treatment, the oxygen available for the bioluminescence reaction could be reduced to limiting levels, leading to underestimation of the actual number of luciferase-labeled cells during in vivo experiments.
View Article and Find Full Text PDFWe recently introduced the concept of photodynamic molecular beacons (PMB) for selective control of photodynamic therapy (PDT). The PMB consists of a peptide linker that is sequence specific to a cancer-associated protease. A photosensitizer (PS) and a singlet oxygen (1O2) quencher are conjugated to the opposite ends of this linker.
View Article and Find Full Text PDFPolymeric micelles are emerging as an effective drug delivery system for hydrophobic photosensitizers in photodynamic therapy (PDT). The objective of this study was to investigate the formulation of hydrophobic protoporphyrin IX (PpIX) with MePEG(5000)-b-PCL(4100) [methoxy poly (ethylene glycol)-b-poly (caprolactone)] diblock copolymers and to compare their PDT response to that of free PpIX. The photophysical and photochemical properties of the polymeric PpIX micelles were studied by measuring absorbance and fluorescence spectra, PpIX-loading efficiency and stability, the micelle particle size and morphology, as well as singlet oxygen luminescence and lifetime.
View Article and Find Full Text PDFMolecular beacons are FRET-based target-activatable probes. They offer control of fluorescence emission in response to specific cancer targets, thus are useful tools for in vivo cancer imaging. Photodynamic therapy (PDT) is a cell-killing process by light activation of a photosensitizer (PS) in the presence of oxygen.
View Article and Find Full Text PDFAs photodynamic therapy (PDT) continues to develop and find new clinical indications, robust individualized dosimetry is warranted to achieve effective treatments. We posit that the most direct PDT dosimetry is achieved by monitoring singlet oxygen (1O2), the major cytotoxic species generated photochemically during PDT. Its detection and quantification during PDT have been long-term goals for PDT dosimetry and the development of techniques for this, based on detection of its near-infrared luminescence emission (1270 nm), is at a noteworthy stage of development.
View Article and Find Full Text PDF