Flying insects have a robust flight system that allows them to fly even when their forewings are damaged. The insect must adjust wingbeat kinematics to aerodynamically compensate for the loss of wing area. However, the mechanisms that allow insects with asynchronous flight muscle to adapt to wing damage are not well understood.
View Article and Find Full Text PDFSeveral agriculturally valuable plants store their pollen in tube-like poricidal anthers, which release pollen through buzz pollination. In this process, bees rapidly vibrate the anther using their indirect flight muscles. The stiffness and resonant frequency of the anther are crucial for effective pollen release, yet the impact of turgor pressure on these properties is not well understood.
View Article and Find Full Text PDFInsects have developed diverse flight actuation mechanisms, including synchronous and asynchronous musculature. Indirect actuation, used by insects with both synchronous and asynchronous musculature, transforms thorax exoskeletal deformation into wing rotation. Though thorax deformation is often attributed exclusively to muscle tension, the inertial and aerodynamic forces generated by the flapping wings may also contribute.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2022
Small-scale flapping-wing micro air vehicles (FWMAVs) are an emerging robotic technology with many applications in areas including infrastructure monitoring and remote sensing. However, challenges such as inefficient energetics and decreased payload capacity preclude the useful implementation of FWMAVs. Insects serve as inspiration to FWMAV design owing to their energy efficiency, maneuverability, and capacity to hover.
View Article and Find Full Text PDFInsect wings are heterogeneous structures, with flexural rigidity varying one to two orders of magnitude over the wing surface. This heterogeneity influences the deformation the flapping wing experiences during flight. However, it is not well understood how this flexural rigidity gradient affects wing performance.
View Article and Find Full Text PDFApproximately 10% of flowering plant species conceal their pollen within tube-like poricidal anthers. Bees extract pollen from poricidal anthers via floral buzzing, a behavior during which they apply cyclic forces by biting the anther and rapidly contracting their flight muscles. The success of pollen extraction during floral buzzing relies on the direction and magnitude of the forces applied by the bees, yet these forces and forcing directions have not been previously quantified.
View Article and Find Full Text PDFAn estimated 10% of flowering plant species conceal their pollen within tube-like anthers that dehisce through small apical pores (poricidal anthers). Bees extract pollen from poricidal anthers through a complex motor routine called floral buzzing, whereby the bee applies vibratory forces to the flower stamen by rapidly contracting its flight muscles. The resulting deformation depends on the stamen's natural frequencies and vibration mode shapes, yet for most poricidal species, these properties have not been sufficiently characterized.
View Article and Find Full Text PDFThe thorax is a specialized structure central to insect flight. In the thorax, flight muscles are surrounded by a thin layer of cuticle. The structure, composition, and material properties of this chitinous structure may influence the efficiency of the thorax in flight.
View Article and Find Full Text PDFBioinspir Biomim
November 2020
Flapping insect wings deform during flight. This deformation benefits the insect's aerodynamic force production as well as energetic efficiency. However, it is challenging to measure wing displacement field in flying insects.
View Article and Find Full Text PDFInsects with asynchronous flight muscles are believed to flap at the effective fundamental frequency of their thorax-wing system. Flapping in this manner leverages the natural elasticity of the thorax to reduce the energetic requirements of flight. However, to the best of our knowledge, the fundamental frequency of the insect wing-muscle-thorax system has not been measured.
View Article and Find Full Text PDFFlapping insect wings deform under aerodynamic as well as inertial-elastic forces. This deformation is thought to improve power economy and reduce the energetic costs of flight. However, many flapping wing models employ rigid body simplifications or demand excessive computational power, and are consequently unable to identify the influence of flexibility on flight energetics.
View Article and Find Full Text PDFManeuvering in both natural and artificial miniature flying systems is assumed to be dominated by aerodynamic phenomena. To explore this, we develop a flapping wing model integrating aero and inertial dynamics. The model is applied to an elliptical wing similar to the forewing of the Hawkmoth Manduca sexta and realistic kinematics are prescribed.
View Article and Find Full Text PDF