Trans-differentiation to a transfer-cell morphology is characterized by the localized deposition of wall ingrowth papillae that protrude into the cytosol. Whether the cortical microtubule array directs wall ingrowth papillae formation was investigated using a Vicia faba cotyledon culture system in which their adaxial epidermal cells were spontaneously induced to trans-differentiate to transfer cells. During deposition of wall ingrowth papillae, the aligned cortical microtubule arrays in precursor epidermal cells were reorganized into a randomized array characterized by circular depletion zones.
View Article and Find Full Text PDFEvidence is presented for the role of a mitochondrial ribosomal (mitoribosomal) L18 protein in cell division, differentiation, and seed development after the characterization of a recessive mutant, heart stopper (hes). The hes mutant produced uncellularized endosperm and embryos arrested at the late globular stage. The mutant embryos differentiated partially on rescue medium with some forming callus.
View Article and Find Full Text PDFThere is controversy surrounding the described life cycle of the rust fungus Puccinia psidii sensu lato, which causes disease on several plant species in the family Myrtaceae. The objective of this study was to determine whether P. psidii s.
View Article and Find Full Text PDFBackground: Scanning electron microscopy (SEM) has been used for high-resolution imaging of plant cell surfaces for many decades. Most SEM imaging employs the secondary electron detector under high vacuum to provide pseudo-3D images of plant organs and especially of surface structures such as trichomes and stomatal guard cells; these samples generally have to be metal-coated to avoid charging artefacts. Variable pressure-SEM allows examination of uncoated tissues, and provides a flexible range of options for imaging, either with a secondary electron detector or backscattered electron detector.
View Article and Find Full Text PDFBackground: It is well known that preparation of biological (plant and animal) tissues for Scanning Electron Microscopy (SEM) by chemical fixation and critical point drying results in shrinkage of tissues, often by up to 20-30%, depending on the tissue type and fixation protocol used. We sought to identify a protocol that would preserve tissue size and morphology better than standard chemical fixatives and dehydration regimes. We compared a range of processing techniques by quantifying changes in tissue size and recording details of surface morphology using leaf tissues from three commonly studied species; Arabidopsis thaliana, barley and cotton.
View Article and Find Full Text PDFLate maturity α-amylase (LMA) is a genetic defect that is commonly found in bread wheat (Triticum aestivum) cultivars and can result in commercially unacceptably high levels of α-amylase in harvest-ripe grain in the absence of rain or preharvest sprouting. This defect represents a serious problem for wheat farmers, and apart from the circumstantial evidence that gibberellins are somehow involved in the expression of LMA, the mechanisms or genes underlying LMA are unknown. In this work, we use a doubled haploid population segregating for constitutive LMA to physiologically analyze the appearance of LMA during grain development and to profile the transcriptomic and hormonal changes associated with this phenomenon.
View Article and Find Full Text PDF• Lack of grain dormancy in cereal crops such as barley and wheat is a common problem affecting farming areas around the world, causing losses in yield and quality because of preharvest sprouting. Control of seed or grain dormancy has been investigated extensively using various approaches in different species, including Arabidopsis and cereals. However, the use of a monocot model plant such as Brachypodium distachyon presents opportunities for the discovery of new genes related to grain dormancy that are not present in modern commercial crops.
View Article and Find Full Text PDFDrought stress at the reproductive stage causes pollen sterility and grain loss in wheat (Triticum aestivum). Drought stress induces abscisic acid (ABA) biosynthesis genes in anthers and ABA accumulation in spikes of drought-sensitive wheat varieties. In contrast, drought-tolerant wheat accumulates lower ABA levels, which correlates with lower ABA biosynthesis and higher ABA catabolic gene expression (ABA 8'-hydroxylase).
View Article and Find Full Text PDFTransfer cells (TCs) are specialized cells exhibiting invaginated wall ingrowths (WIs), thereby amplifying their plasma membrane surface area (PMSA) and hence the capacity to transport nutrients. However, it remains unknown as to whether TCs play a role in biomass yield increase during evolution or domestication. Here, we examine this issue from a comparative evolutionary perspective.
View Article and Find Full Text PDFIn temperate cereals, such as wheat (Triticum aestivum) and barley (Hordeum vulgare), the transition to reproductive development can be accelerated by prolonged exposure to cold (vernalization). We examined the role of the grass-specific MADS box gene ODDSOC2 (OS2) in the vernalization response in cereals. The barley OS2 gene (HvOS2) is expressed in leaves and shoot apices but is repressed by vernalization.
View Article and Find Full Text PDFThe decay of seed dormancy during after-ripening is not well understood, but elucidation of the mechanisms involved may be important for developing strategies for modifying dormancy in crop species and, for example, addressing the problem of preharvest sprouting in cereals. We have studied the germination characteristics of barley (Hordeum vulgare 'Betzes') embryos, including a description of anatomical changes in the coleorhiza and the enclosed seminal roots. The changes that occur correlate with abscisic acid (ABA) contents of embryo tissues.
View Article and Find Full Text PDFTransfer cells (TCs) trans-differentiate from differentiated cells by developing extensive wall ingrowths that enhance plasma membrane transport of nutrients. Here, we investigated transcriptional changes accompanying induction of TC development in adaxial epidermal cells of cultured Vicia faba cotyledons. Global changes in gene expression revealed by cDNA-AFLP were compared between adaxial epidermal cells during induction (3 h) and subsequent building (24 h) of wall ingrowths, and in cells of adjoining storage parenchyma tissue, which do not form wall ingrowths.
View Article and Find Full Text PDFThe arrangement of cellulose microfibrils and cortical microtubules in transfer cells depositing flange wall ingrowths have been determined with field emission scanning electron microscopy and immunofluorescence confocal microscopy. In xylem transfer cells of wheat (Triticum aestivum) stem nodes and transfer cells of corn (Zea mays) endosperm tissue, cellulose microfibrils were aligned in parallel bundles to form the linear wall ingrowths characteristic of flange ingrowth morphology. In both cell types, linear bundles of cellulose microfibrils were deposited over an underlying wall composed of randomly arranged microfibrils.
View Article and Find Full Text PDFDespite the recognized physiological importance of transfer cells, little is known about how these specialized cells achieve localized deposition of cell wall material, leading to amplification of plasma membrane surface area and enhanced membrane transport capacity. This study establishes that cellulose synthesis is a key early factor in the construction of 'reticulate' wall ingrowths, an elaborate but common form of localized wall deposition characteristic of most transfer cells. Using field emission scanning electron microscopy, wall ingrowths were first visible in epidermal transfer cells of Faba bean cotyledons as raised 'patches' of disorganized and tangled cellulosic material, and, from these structures, ingrowths emerged via further deposition of wall material.
View Article and Find Full Text PDFDespite the importance of transfer cells in enhancing nutrient transport in plants, little is known about how deposition of the complex morphology of their wall ingrowths is regulated. We probed thin sections of mature cotyledon epidermal transfer cells of Vicia faba with affinity probes and antibodies specific to polysaccharides and glycoproteins, to determine the distribution of these components in their walls. Walls of these transfer cells consist of the pre-existing primary wall, a uniformly deposited wall layer and wall ingrowths which are comprised of two regions; an electron-opaque inner region and an electron-translucent outer region.
View Article and Find Full Text PDFTransfer cells are plant cells with secondary wall ingrowths. These cells are ubiquitous, occurring in all plant taxonomic groups and in algae and fungi. Transfer cells form from differentiated cells across developmental windows and in response to stress.
View Article and Find Full Text PDFA survey is presented of the architecture of secondary wall ingrowths in transfer cells from various taxa based on scanning electron microscopy. Wall ingrowths are a distinguishing feature of transfer cells and serve to amplify the plasma membrane surface area available for solute transport. Morphologically, two categories of ingrowths are recognized: reticulate and flange.
View Article and Find Full Text PDF