Publications by authors named "Mark J Snider"

A gene cluster responsible for the degradation of nicotinic acid (NA) in has recently been identified, and the structures and functions of the resulting enzymes are currently being evaluated to establish pathway intermediates. One of the genes within this cluster encodes a flavin monooxygenase (BnFMO) that is hypothesized to catalyze a hydroxylation reaction. Kinetic analyses of the recombinantly purified BnFMO suggest that this enzyme catalyzes the hydroxylation of 2,6-dihydroxynicotinic acid (2,6-DHNA) or 2,6-dihydroxypyridine (2,6-DHP), which is formed spontaneously by the decarboxylation of 2,6-DHNA.

View Article and Find Full Text PDF

The title compound, CHNO, is a hy-droxy-lated pyridine ring that has been studied for its involvement in microbial degradation of nicotinic acid. Here we describe its synthesis as a formic acid salt, rather than the standard hydro-chloride salt that is commercially available, and its spectroscopic and crystallographic characterization.

View Article and Find Full Text PDF

6-Hydroxynicotinic acid 3-monooxygenase (NicC) is a bacterial enzyme involved in the degradation of nicotinic acid. This enzyme is a Class A flavin-dependent monooxygenase that catalyzes a unique decarboxylative hydroxylation. The unliganded structure of this enzyme has previously been reported and studied using steady- and transient-state kinetics to support a comprehensive kinetic mechanism.

View Article and Find Full Text PDF

The class A flavoenzyme 6-hydroxynicotinate 3-monooxygenase (NicC) catalyzes a rare decarboxylative hydroxylation reaction in the degradation of nicotinate by aerobic bacteria. While the structure and critical residues involved in catalysis have been reported, the mechanism of this multistep enzyme has yet to be determined. A kinetic understanding of the NicC mechanism would enable comparison to other phenolic hydroxylases and illuminate its bioengineering potential for remediation of -heterocyclic aromatic compounds.

View Article and Find Full Text PDF

Phosphagen kinases (PKs) are known to be distributed throughout the animal kingdom, but have recently been discovered in some protozoan and bacterial species. A recent search of the available bacterial genomes revealed 49 unique sequences that appear to code for an arginine kinase (AK). The distribution of sequences was highly skewed with thirty nine out the forty nine sequences being found in six Proteobacteria classes (α, β, δ, γ, ε, and ζ) which represented 46.

View Article and Find Full Text PDF

6-Hydroxynicotinate 3-monooxygenase (NicC) is a Group A FAD-dependent monooxygenase that catalyzes the decarboxylative hydroxylation of 6-hydroxynicotinic acid (6-HNA) to 2,5-dihydroxypyridine (2,5-DHP) with concomitant oxidation of NADH in nicotinic acid degradation by aerobic bacteria. Two mechanisms for the decarboxylative hydroxylation half-reaction have been proposed [Hicks, K., et al.

View Article and Find Full Text PDF

Bacillus niacini is a member of a small yet diverse group of bacteria able to catabolize nicotinic acid. We report here the availability of a draft genome for B. niacini, which we will use to understand the evolution of its namesake phenotype, which appears to be unique among the species in its phylogenetic neighborhood.

View Article and Find Full Text PDF

Phosphagen kinases (PKs) are known to be distributed throughout the animal kingdom, but have recently been discovered in some protozoan and bacterial species. Within animal species, these enzymes play a critical role in energy homeostasis by catalyzing the reversible transfer of a high-energy phosphoryl group from Mg⋅ATP to an acceptor molecule containing a guanidinium group. In this work, a putative PK gene was identified in the oomycete Phytophthora sojae that was predicted, based on sequence homology, to encode a multimeric hypotaurocyamine kinase.

View Article and Find Full Text PDF

Cytidine deaminase (CDA) binds the inhibitor zebularine as its 3,4-hydrate (K(d) ~ 10(-12) M), capturing all but ~5.6 kcal/mol of the free energy of binding expected of an ideal transition state analogue (K(tx) ~ 10(-16) M). On the basis of its entropic origin, that shortfall was tentatively ascribed to the trapping of a water molecule in the enzyme-inhibitor complex, as had been observed earlier for product uridine [Snider, M.

View Article and Find Full Text PDF

The penultimate reaction in the oxidative degradation of nicotinate (vitamin B(3)) to fumarate in several species of aerobic bacteria is the hydrolytic deamination of maleamate to maleate, catalyzed by maleamate amidohydrolase (NicF). Although it has been considered a model system for bacterial degradation of N-heterocyclic compounds, only recently have gene clusters that encode the enzymes of this catabolic pathway been identified to allow detailed investigations concerning the structural basis of their mechanisms. Here, the Bb1774 gene from Bordetella bronchiseptica RB50, putatively annotated as nicF, has been cloned, and the recombinant enzyme, overexpressed and purified from Escherichia coli, is shown to catalyze efficiently the hydrolysis of maleamate to maleate and ammonium ion.

View Article and Find Full Text PDF

Phosphagen kinases are found throughout the animal kingdom and catalyze the transfer of a high-energy gamma phosphoryl-group from ATP to a guanidino group on a suitable acceptor molecule such as creatine or arginine. Recent genome sequencing efforts in several proteobacteria, including Desulfotalea psychrophila LSv54, Myxococcus xanthus, Sulfurovum sp. NBC37-1, and Moritella sp.

View Article and Find Full Text PDF

Eight variants of creatine kinase were created to switch the substrate specificity from creatine to glycocyamine using a rational design approach. Changes to creatine kinase involved altering several residues on the flexible loops that fold over the bound substrates including a chimeric replacement of the guanidino specificity loop from glycocyamine kinase into creatine kinase. A maximal 2,000-fold change in substrate specificity was obtained as measured by a ratio of enzymatic efficiency (k(cat)/K(M).

View Article and Find Full Text PDF

Six fully conserved arginine residues (R129, R131, R235, R291, R319, and R340) closely grouped in the nucleotide binding site of rabbit muscle creatine kinase (rmCK) were mutated; four to alanine and all six to lysine. Kinetic analyses in the direction of phosphocreatine formation showed that all four alanine mutants led to substantial losses of activity with three (R129A, R131A, and R235A) having no detectable activity. All six lysine mutants retained variable degrees of reduced enzymatic activity.

View Article and Find Full Text PDF

The structures of several powerful inhibitors of hydrolytic enzymes resemble that of the altered substrate in the transition state, except that a hydrogen atom replaces one substituent (typically the leaving group). To test the hypothesis that a water molecule might be present in the gap resulting from this replacement, we examined a transition-state analogue complex formed by Escherichia coli cytidine deaminase by Fourier transform ion cyclotron resonance MS in electrospray mode. Upon nebularization from aqueous solution under conditions (pH 5.

View Article and Find Full Text PDF

To explore the possibility that asparagine 285 plays a key role in transition state stabilization in phosphagen kinase catalysis, the N285Q, N285D, and N285A site-directed mutants of recombinant rabbit muscle creatine kinase (rmCK) were prepared and characterized. Kinetic analysis of phosphocreatine formation showed that the catalytic efficiency of each N285 mutant was reduced by approximately four orders of magnitude, with the major cause of activity loss being a reduction in k(cat) in comparison to the recombinant native CK. The data for N285Q still fit a random-order, rapid-equilibrium mechanism, with either MgATP or creatine binding first with affinities very nearly equal to those for native CK.

View Article and Find Full Text PDF

Cytosolic creatine kinase exists in native form as a dimer; however, the reasons for this quaternary structure are unclear, given that there is no evidence of active site communication and more primitive guanidino kinases are monomers. Three fully conserved residues found in one-half of the dimer interface of the rabbit muscle creatine kinase (rmCK) were selectively changed to alanine by site-directed mutagenesis. Four mutants were prepared, overexpressed, and purified: R147A, R151A, D209A, and R147A/R151A.

View Article and Find Full Text PDF

Recombinant rabbit muscle creatine kinase (CK) was titrated with MgADP in 50 mM Bicine and 5 mM Mg(OAc)2, pH 8.3, at 30.0 degrees C by following a decrease in the protein's intrinsic fluorescence.

View Article and Find Full Text PDF

In neutral solution, 5,6-dihydrocytidine undergoes spontaneous deamination (k25 approximately 3.2 x 10(-5) s(-1)) much more rapidly than does cytidine (k25 approximately 3.0 x 10(-10) s(-1)), with a more favorable enthalpy of activation (DeltaDeltaH# = -8.

View Article and Find Full Text PDF

15N isotope effects and solvent deuterium isotope effects have been measured for the hydrolytic deamination of cytidine catalyzed by Escherichia coli cytidine deaminase and for the uncatalyzed reaction proceeding spontaneously in neutral solution at elevated temperatures. The primary (15)(V/K) arising from the exocyclic amino group for wild-type cytidine deaminase acting on its natural substrate, cytidine, is 1.0109 (in H(2)O, pH 7.

View Article and Find Full Text PDF