The supported lipid bilayer has been portrayed as a useful model of the cell membrane compatible with many biophysical tools and techniques that demonstrate its appeal in learning about the basic features of the plasma membrane. However, some of its potential has yet to be realized, particularly in the area of bilayer patterning and phase/composition heterogeneity. In this work, we generate contiguous bilayer patterns as a model system that captures the general features of membrane domains and lipid rafts.
View Article and Find Full Text PDFMembrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins.
View Article and Find Full Text PDFA new method is presented to separate, enrich, and sort membrane-bound biomolecules based on their affinity for different coexisting lipid phases in a supported lipid bilayer using a two-dimensional, continuous extraction procedure. Analogous to classic liquid-liquid phase extraction, we created two distinct lipid phases in our planar membrane system: a liquid-ordered (l(o)) phase and a liquid-disordered (l(d)) phase arranged in parallel stripes inside a microfluidic device. Membrane-bound biomolecules in an adjacent supported lipid bilayer are convected in plane along the microfluidic channel and brought into contact with a different lipid phase using hydrodynamic force.
View Article and Find Full Text PDF