Publications by authors named "Mark J Prandolini"

Ultrashort ultraviolet (UV) pulses are pivotal for resolving ultrafast electron dynamics. However, their efficient generation is strongly impeded by material dispersion and two-photon absorption, in particular, if pulse durations around a few tens of femtoseconds or below are targeted. Here, we present a new (to our knowledge) approach to ultrashort UV pulse generation: using the fourth-harmonic generation output of a commercial ytterbium laser system delivering 220 fs UV pulses, we implement a multi-pass cell (MPC) providing 5.

View Article and Find Full Text PDF

The control of low-energy electrons by carrier-envelope-phase-stable near-single-cycle THz pulses is demonstrated. A femtosecond laser pulse is used to create a temporally localized wave packet through multiphoton absorption at a well defined phase of a synchronized THz field. By recording the photoelectron momentum distributions as a function of the time delay, we observe signatures of various regimes of dynamics, ranging from recollision-free acceleration to coherent electron-ion scattering induced by the THz field.

View Article and Find Full Text PDF

Spatially encoded measurements of transient optical transmissivity became a standard tool for temporal diagnostics of free-electron-laser (FEL) pulses, as well as for the arrival time measurements in X-ray pump and optical probe experiments. The modern experimental techniques can measure changes in optical coefficients with a temporal resolution better than 10 fs. This, in an ideal case, would imply a similar resolution for the temporal pulse properties and the arrival time jitter between the FEL and optical laser pulses.

View Article and Find Full Text PDF

The dream of physico-chemists to control molecular reactions with light beyond electronic excitations pushes the development of laser pulse shaping capabilities in the mid-infrared (MIR) spectral range. Here, we present a compact optical parametric amplifier platform for the generation and shaping of MIR laser pulses in the wavelength range between 8 μm and 15 μm. Opportunities for judiciously tailoring the electromagnetic waveform are investigated, demonstrating light field control with a spectral resolution of 59 GHz at a total spectral bandwidth of 5 THz.

View Article and Find Full Text PDF

Dynamic nuclear polarization (DNP) at high magnetic fields (9.2 T, 400 MHz (1)H NMR frequency) requires high microwave power sources to achieve saturation of the EPR transitions. Here we describe the first high-field liquid-state DNP results using a high-power gyrotron microwave source (20 W at 260 GHz).

View Article and Find Full Text PDF