Publications by authors named "Mark J Maclachlan"

The field of platinum chemistry is ubiquitous in the research of anticancer drugs and new OLED materials. Within the vast library of existing compounds, the majority of work focuses on complexes in the +2 and +4 oxidation states, with comparatively few examples of Pt complexes reported without bridging ligands. Pt complexes with metal-metal bonding can be made by mild oxidation of Pt complexes having bis(phenylpyridine) ligands.

View Article and Find Full Text PDF

Cellulose nanocrystals (CNCs) are known to self-assemble into a left-handed chiral nematic lyotropic liquid crystalline phase in water. When captured in the solid state, this structure can impart films with photonic properties that make them promising candidates in photonics, sensing, security, and other areas. Unfortunately, the intrinsic hydrophilicity of CNCs renders these iridescent films susceptible to moisture, thereby limiting their practicality.

View Article and Find Full Text PDF

Post-synthetic modification of mechanically interlocked molecules (MIMs) is an attractive avenue to add complexity to already intricate systems. This remains an important, challenging topic that is under-developed. In this paper, we report the synthesis and characterization of a [2]rotaxane molecule featuring a ring appended to an emissive cyclometalated Pt unit.

View Article and Find Full Text PDF

Chiral nematic mesoporous organosilica (CNMO) films have unique iridescent properties that make them attractive candidates for decorations, sensing and photonics. However, it has proven difficult to control the colour and porosity of CNMO films. Here, we have explored the addition of a range of biodegradable and eco-friendly additives to tune the helical pitch and, hence, the colour of the CNMO materials.

View Article and Find Full Text PDF

Cyclometalated platinum complexes play a crucial role in catalysis, bioimaging, and optoelectronics. Phenylpyridines are widespread cyclometalating ligands that generate stable and highly emissive Pt complexes. While it is common practice to modify these ligands to fine-tune their photophysical properties, the incorporation of polycyclic aromatic hydrocarbons into the ligand's structure has been largely overlooked.

View Article and Find Full Text PDF

Transient technology involves materials and devices that undergo controlled degradation after a reliable operation period. This groundbreaking strategy offers significant advantages over conventional devices based on non-renewable materials by limiting environmental exposure to potentially hazardous components after disposal, and by increasing material circularity. As the most abundant naturally occurring polymer on Earth, cellulose is an attractive material for this purpose.

View Article and Find Full Text PDF

We report the reversible transformation between a singly stapled dynamic α-helical peptide and a doubly stapled quasi-static one through redox-triggered dithiol/disulfide conversions of a stapling moiety. This process allows the rate of interconversion between the right-handed (P) and left-handed (M) α-helices to be altered by a factor of approximately 10 before and after the transformation. An as-obtained doubly stapled α-helical peptide, which is composed of an achiral peptide having an l-valine carboxylic acid residue at the C-terminus, a disulfide-based reversible staple, and a biphenyl-based fixed staple, adopts an (M)-rich form as a kinetically trapped state.

View Article and Find Full Text PDF
Article Synopsis
  • Modifying the environment around particles can enhance their interactions and control the properties of dynamic systems.
  • The study demonstrates for the first time that graphene oxide (GO) photonic liquids can be influenced by an external magnetic field through the use of magnetic nanoparticles.
  • This control over the alignment of GO nanosheets allows for switchable photonic properties and presents potential applications in developing new optical materials and devices.
View Article and Find Full Text PDF

Humankind's manipulation of platinum dates back more than two millennia to burial objects. Since then, its use has evolved from purely decorative purposes in jewelry to more functional applications such as in catalysts, pharmaceuticals, and bioimaging agents. Platinum offers a range of properties arguably unmatched by any other metal, including electroactivity, photoluminescence, chromic behaviour, catalysis, redox reactivity, photoreactivity, and stimuli-controlled intermetallic interactions.

View Article and Find Full Text PDF

In nature, α-helical peptides adopt right-handed conformations that are dictated by L-amino acids. Isolating one-handed α-helical peptides composed of only achiral components remains a significant challenge. Here, this goal is achieved by optical resolution of the corresponding racemic (quasi-)static α-helical peptide with double stapling, which effectively freezes the interconversion between the right-handed (P)- and left-handed (M)-α-helices.

View Article and Find Full Text PDF

The quest for advanced water purification technologies has been vigorous over recent decades, motivated by the promise of ever more efficient, greener, and affordable tools. Halloysite nanotubes (HNTs) are naturally-occurring materials that have shown potential as dye sorbents. Unfortunately, these nanoclays suffer from low permeation during water treatment, which limits their widespread application.

View Article and Find Full Text PDF

Biological systems exploit restricted degrees of freedom to drive self-assembly of nano- and microarchitectures. Simplified systems, such as colloidal nanoparticles that behave as lyotropic liquid crystalline mesophases in confined geometric spaces, may be used to mimic biological structures. Cellulose nanocrystals (CNCs) are colloidally stable nanoparticles that self-assemble into chiral nematic () liquid crystalline mesophases.

View Article and Find Full Text PDF

Metal-metal bonds have rarely been explored as active elements in supramolecular assemblies despite their unique potential to introduce responsive behavior. In this report, a dynamic molecular container composed of two cyclometalated Pt units is constructed using Pt-Pt bonds. This molecule-the flytrap-has a flexible jaw composed of two [18]crown-6 ethers that can adapt their shape to bind large inorganic cations with sub-micromolar affinity.

View Article and Find Full Text PDF

Films of cellulose nanocrystals (CNCs) with chiral nematic organization can show vivid iridescence that arises from their hierarchical structure. Unfortunately, the brittleness of the films limits their potential applications. In this paper, we investigate the incorporation of halloysite nanotubes (HNTs) into CNC films to prepare organic-inorganic composite films with enhanced mechanical properties, while preserving the chiral nematic structure and brilliant iridescence.

View Article and Find Full Text PDF

Thermal stability is a crucial property of materials, especially when they have a wide range of thermally sensitive applications. Cellulose nanomaterials (CNMs) extracted from cellulosic biomass have garnered significant attention due to their abundance, biodegradability, sustainability, production scalability, and industrial versatility. To explore the correlation between the structure, chemistry, and morphology of CNMs and their thermal stability, we present a comprehensive literature review.

View Article and Find Full Text PDF

The development of long-lived electrochemical energy storage systems based on renewable materials is integral for the transition toward a more sustainable society. Supercapacitors have garnered considerable interest given their impressive cycling performance, low cost, and safety. Here, the first example of a chiral nematic activated carbon aerogel is shown.

View Article and Find Full Text PDF

Stimulus-responsive materials that display circularly polarized luminescence (CPL) have attracted great attention for application in chiral sensors and smart displays. However, due to difficulties in the regulation of chiral structures, fine control of CPL remains a challenge. Here, it is demonstrated that cellulose nanocrystal shape-memory polymers (CNC-SMPs) with luminescent components enable mechanically responsive CPL.

View Article and Find Full Text PDF

Zeolitic imidazolate framework (ZIF-8) nanocrystals were uniformly grown on the surface of cellulose nanocrystals (CNCs) to give a hybrid material, ZIF@CNCs. By varying the stoichiometry of the components, it was possible to control the size of the ZIF-8 crystals grown on the CNC surface. Optimized ZIF@CNC (ZIF@CNC-2) was used as a template to synthesize a microporous organic polymer (MOP), ZIF@MOP@CNC.

View Article and Find Full Text PDF

Photonic materials based on composite films of cellulose nanocrystals (CNCs) and polymers are promising as they can be renewable and show tunable optical and mechanical properties. However, the influence of polymers on CNC self-assembly is not always well understood, and conflicting results are present in the literature. In this study, we incorporate three neutral, water-soluble polymers-poly(ethylene glycol) (PEG), poly(vinyl pyrrolidone) (PVP), and poly(acrylic acid) (PAA)-with different molecular weights into CNC suspensions at various concentrations prior to obtaining iridescent composite thin films by solvent evaporation.

View Article and Find Full Text PDF

Gels are useful materials for drug delivery, wound dressings, tissue engineering, and 3D printing. These various applications require gels with different mechanical properties that can be easily tuned, also preferably excluding the use of chemical additives, which can be toxic or harmful to the body or environment. Here, we report a novel strategy to synthesize cellulose nanocrystal (CNC) gels with tunable mechanical properties.

View Article and Find Full Text PDF

In our daily life, some of the most valuable commodities are preprogrammed or preassembled by a manufacturer; the end-user puts together the final product and gathers properties or function as desired. Here, we present a chemical approach to preassembled materials, namely supramolecular polymer networks (SPNs), which wait for an operator's command to organize autonomously. In this prototypical system, the controlled disassembly of a metastable interlocked molecule (rotaxane) liberates an active species to the medium.

View Article and Find Full Text PDF

Macrocycle engineering is a key topic in supramolecular chemistry. When synthesizing a ring, one can obtain either complex mixtures of macrocycles of different sizes or a single ring if a template is utilized. Here, we unite these approaches along with post-synthetic modifications to transform a single tether into multiple rings-up to five per tether.

View Article and Find Full Text PDF

Cellulose, a renewable structural biopolymer, is ubiquitous in nature and is the basic reinforcement component of the natural hierarchical structures of living plants, bacteria, and tunicates. However, a detailed picture of the crystalline cellulose surface at the molecular level is still unavailable. Here, using atomic force microscopy (AFM) and molecular dynamics (MD) simulations, we revealed the molecular details of the cellulose chain arrangements on the surfaces of individual cellulose nanocrystals (CNCs) in water.

View Article and Find Full Text PDF

Salphen-based [ + ] macrocycles have been widely explored for their unique chemical and topological properties following metal ion coordination. Despite having vastly different reactivity than their coordinated counterparts, fewer studies have focused on metal-free salphen macrocycles. We investigated the binding of [2 + 2] Schiff-base macrocycle host 3, which contains a central 18-crown-6-like cavity and two NO moieties.

View Article and Find Full Text PDF