Publications by authors named "Mark J Holmes"

This study examines the relationship between foreign direct investment (FDI), institutional quality and human development) in host countries from 2002 to 2019, using the Human Development Index [HDI] as the measure of human development. This study utilized a panel dataset of 143 countries, including both developed and developing economies, over a 17-year period. Additionally, the study employed a GMM (generalized method of moments) estimator to address unobservable heterogeneity and simultaneity.

View Article and Find Full Text PDF

Wide bandgap III-nitride quantum dots (QDs) are promising materials for the realization of solid-state single-photon sources, especially operating at room temperature. However, so far a large degree of inhomogeneous broadening induced by spectral diffusion has compromised their use. Here, we demonstrate the ultraclean emission from single GaN QDs formed at macrostep edges in a GaN/AlGaN quantum well.

View Article and Find Full Text PDF

Semiconducting single-walled carbon nanotubes are one-dimensional materials with great prospects for applications such as optoelectronic and quantum information devices. Yet, their optical performance is hindered by low fluorescent yield. Highly mobile excitons interacting with quenching sites are attributed to be one of the main non-radiative decay mechanisms that shortens the exciton lifetime.

View Article and Find Full Text PDF

We investigate nontrivial surface effects on the optical properties of self-assembled crystalline GaN nanotubes grown on Si substrates. The excitonic emission is observed to redshift by ∼100 meV with respect to that of bulk GaN. We find that the conduction band edge is mainly dominated by surface atoms, and that a larger number of surface atoms for the tube is likely to increase the bandwidth, thus reducing the optical bandgap.

View Article and Find Full Text PDF

We report the detection of fully confined excited states and the zero-absorption region of individual site-controlled GaN/AlGaN nanowire quantum dots using photoluminescence excitation spectroscopy, which provides evidence of the true zero-dimensional discrete density of states of such quantum dots. Because of the strong quantum confinement in these dots, the p-shell, d-shell, and even higher energy (including some f-shell) states of a single quantum dot are observed, which provides unprecedented insight into the electronic structure. Several emitters are measured and used to build up an average picture of the electronic structure of a single quantum dot via comparison to theoretical simulations.

View Article and Find Full Text PDF

We demonstrate triggered single photon emission at room temperature from a site-controlled III-nitride quantum dot embedded in a nanowire. Moreover, we reveal a remarkable temperature insensitivity of the single photon statistics, and a g((2))[0] value at 300 K of just 0.13.

View Article and Find Full Text PDF

Semiconductor nanopyramids (NPs) provide advantages in the development of novel functional optoelectronic devices due to their unique size-dependent properties. Here we demonstrate a new method for the fabrication of selectively self-assembled single-crystalline GaN NPs on the m-plane of periodically strained GaN/InGaN multiquantum disks embedded in the middle of GaN nanorods. The GaN NPs, which have ~100 nm diameters and heights, are observed by scanning electron microscopy and their crystalline structure is confirmed by high-resolution transmission electron microscopy.

View Article and Find Full Text PDF

We have investigated exciton localization in binary GaN nanorods using micro- and time-resolved photoluminescence measurements. The temperature dependence of the photoluminescence has been measured, and several phonon replicas have been observed at the lower energy side of the exciton bound to basal stacking faults (I1). By analyzing the Huang-Rhys parameters as a function of temperature, deduced from the phonon replica intensities, we have found that the excitons are strongly localized in the lower energy tails.

View Article and Find Full Text PDF

We have investigated, using micro-photoluminescence, the quantum confined Stark effect in an In(x)Ga(1-x)N/GaN multi-quantum disk structure at the tip of a single GaN nanorod. A strong and sharp emission line from the In(x)Ga(1-x)N/GaN quantum disks near 3.26 eV was observed.

View Article and Find Full Text PDF

Cavity-enhanced single-photon emission in the blue spectral region was measured from single InGaN/GaN quantum dots. The low-Q microcavities used were characterized using micro-reflectance spectroscopy where the source was the enhanced blue output from a photonic crystal fibre. Micro-photoluminescence was observed from several cavities and found to be ~10 times stronger than typical InGaN quantum dot emission without a cavity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionoman6oapibv0sqoq32c15gngfv464ttb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once