Combinatorial optimization is a broadly attractive area for potential quantum advantage, but no quantum algorithm has yet made the leap. Noise in quantum hardware remains a challenge, and more sophisticated quantum-classical algorithms are required to bolster their performance. Here, we introduce an iterative quantum heuristic optimization algorithm to solve combinatorial optimization problems.
View Article and Find Full Text PDFSRSF1 protein and U1 snRNPs are closely connected splicing factors. They both stimulate exon inclusion, SRSF1 by binding to exonic splicing enhancer sequences (ESEs) and U1 snRNPs by binding to the downstream 5' splice site (SS), and both factors affect 5' SS selection. The binding of U1 snRNPs initiates spliceosome assembly, but SR proteins such as SRSF1 can in some cases substitute for it.
View Article and Find Full Text PDFSpliceosomes are assembled in stages. The first stage forms complex E, which is characterized by the presence of U1 snRNPs base-paired to the 5' splice site, components recognizing the 3' splice site and proteins thought to connect them. The splice sites are held in close proximity and the pre-mRNA is committed to splicing.
View Article and Find Full Text PDFBranching morphogenesis is a central process in renal development, but imaging and quantifying this process beyond early organogenesis presents challenges due to growth of the kidney preventing ready imaging of the complex structures. Current analysis of renal development relies heavily on explant organ culture and visualization by confocal microscopy, as a more developmentally advanced native tissue is too thick for conventional microscopic imaging. Cultured renal primordia lack vascularization and a supportive matrix for normal growth, resulting in tissue compression and distortion of ureteric branching.
View Article and Find Full Text PDF