The remarkable mechanical strength of cellulose reflects the arrangement of multiple β-1,4-linked glucan chains in a para-crystalline fibril. During plant cellulose biosynthesis, a multimeric cellulose synthesis complex (CSC) moves within the plane of the plasma membrane as many glucan chains are synthesized from the same end and in close proximity. Many questions remain about the mechanism of cellulose fibril assembly, for example must multiple catalytic subunits within one CSC polymerize cellulose at the same rate? How does the cellulose fibril bend to align horizontally with the cell wall? Here we used mathematical modeling to investigate the interactions between glucan chains immediately after extrusion on the plasma membrane surface.
View Article and Find Full Text PDFCotton (Gossypium hirsutum) provides the world's dominant renewable textile fiber, and cotton fiber is valued as a research model because of its extensive elongation and secondary wall thickening. Previously, it was assumed that fibers elongated as individual cells. In contrast, observation by cryo-field emission-scanning electron microscopy of cotton fibers developing in situ within the boll demonstrated that fibers elongate within tissue-like bundles.
View Article and Find Full Text PDFPurpose: Although silicone hydrogel materials have produced many corneal health benefits to patients wearing contact lenses, bacteria that cause acute red eye or corneal ulcers are still a concern. A coating that inhibits bacterial colonization while not adversely affecting the cornea should improve the safety of contact lens wear. A covalent selenium (Se) coating on contact lenses was evaluated for safety using rabbits and prevention of bacterial colonization of the contact lenses in vitro.
View Article and Find Full Text PDFMethods Mol Biol
October 2006
Cryopreservation methods, including rapid freezing, freeze-substitution, and low-temperature embedment, lead to superior ultrastructural preservation compared with traditional fixation procedures. This is particularly true for the multicellular stages of Dictyostelium discoideum, in which the hydrophobic sheath that surrounds the structures causes delayed penetration by the already slow-acting aqueous chemical fixatives, resulting in cell shape changes, loss of cell-cell contacts, and changes in cell-matrix interactions. The surface tension effects of traditional fixation methods can also result in disruption of the delicate structures.
View Article and Find Full Text PDFMethods for cryogenic fixation, freeze substitution, and embedding were developed to preserve the cellular structure and protein localization of secondary-wall-stage cotton (Gossypium hirsutum L.) fibers accurately for the first time. Perturbation by specimen handling was minimized by freezing fibers still attached to a seed fragment within 2 min after removal of seeds from a boll still attached to the plant.
View Article and Find Full Text PDFAardvark (Aar) is a Dictyostelium beta-catenin homologue with both cytoskeletal and signal transduction roles during development. Here, we show that loss of aar causes a novel phenotype where multiple stalks appear during late development. Ectopic stalks are preceded by misexpression of the stalk marker ST-lacZ in the surrounding tissue.
View Article and Find Full Text PDF