Publications by authors named "Mark J Forster"

We have previously shown that the heterodimeric cytokine interleukin-12, and the homodimer of its larger subunit p40, both bind to heparin and heparan sulfate with relatively high affinity. In the present study we characterised these interactions using a series of chemically modified heparins as competitive inhibitors. Human interleukin-12 and p40 homodimer show indistinguishable binding profiles with a panel of heparin derivatives, but that of murine interleukin-12 is distinct.

View Article and Find Full Text PDF

NMR spectroscopy is the most popular technique used for structure elucidation of small organic molecules in solution, but incorrect structures are regularly reported. One-bond proton-carbon J-couplings provide additional information about chemical structure because they are determined by different features of molecular structure than are proton and carbon chemical shifts. However, these couplings are not routinely used to validate proposed structures because few software tools exist to predict them.

View Article and Find Full Text PDF

To make full use of research data, the bioscience community needs to adopt technologies and reward mechanisms that support interoperability and promote the growth of an open 'data commoning' culture. Here we describe the prerequisites for data commoning and present an established and growing ecosystem of solutions using the shared 'Investigation-Study-Assay' framework to support that vision.

View Article and Find Full Text PDF

A new generation multi-component vaccine, principally directed against serogroup B Neisseria meningitidis (4CMenB), has recently been developed. One of its components, identified through reverse vaccinology, is the neisserial heparin-binding antigen (NHBA) which is included in the formulation as a novel NHBA-GNA1030 fusion protein (NHBA-FP). We describe here the biophysical characteristics of this vaccine antigen to understand better its structural properties in solution and concurrent immunogenicity prior to formulation.

View Article and Find Full Text PDF

The life science industries (including pharmaceuticals, agrochemicals and consumer goods) are exploring new business models for research and development that focus on external partnerships. In parallel, there is a desire to make better use of data obtained from sources such as human clinical samples to inform and support early research programmes. Success in both areas depends upon the successful integration of heterogeneous data from multiple providers and scientific domains, something that is already a major challenge within the industry.

View Article and Find Full Text PDF

TSG-6, the secreted product of tumor necrosis factor-stimulated gene-6, is not constitutively expressed but is up-regulated in various cell-types during inflammatory and inflammation-like processes. The mature protein is comprised largely of contiguous Link and CUB modules, the former binding several matrix components such as hyaluronan (HA) and aggrecan. Here we show that this domain can also associate with the glycosaminoglycan heparin/heparan sulfate.

View Article and Find Full Text PDF

Fibronectin, a multifunctional glycoprotein of the extracellular matrix, plays a major role in cell adhesion. Various studies have revealed that the human 13th and 14th fibronectin type III domains (labeled (13)F3 and (14)F3 here) contain a heparin-binding site. Mapping of the heparin-binding sites of (13-14)F3, (13)F3, and (14)F3 by NMR chemical shift perturbation, isothermal titration calorimetry, and molecular modeling show that (13)F3 provides the dominant heparin-binding site and that the residues involved are within the first 29 amino acids of (13)F3.

View Article and Find Full Text PDF

The CC chemokine macrophage inflammatory protein 1alpha (MIP1alpha) is a key regulator of the proliferation and differentiation of hematopoietic progenitor cells. The activity of MIP1alpha appears to be modulated by its binding to heparan sulfate (HS) proteoglycans, ubiquitous components of the mammalian cell surface and extracellular matrix. In this study we show that HS has highest affinity for the dimeric form of MIP1alpha.

View Article and Find Full Text PDF

Molecular modelling is a powerful methodology for analysing the three dimensional structure of biological macromolecules. There are many ways in which molecular modelling methods have been used to address problems in structural biology. It is not widely appreciated that modelling methods are often an integral component of structure determination by NMR spectroscopy and X-ray crystallography.

View Article and Find Full Text PDF