Here, we extend the scope of the Gamayunov and Engebretson (2021, hereinafter Paper 1), https://doi.org/10.1029/2021JA029247 work by analyzing the low frequency ultra-low-frequency (ULF) wave power spectra in the Earth's inner magnetosphere during high speed stream (HSS) and quiet solar wind (QSW) driving conditions in the upstream solar wind (SW) and comparing our results to the results of Paper 1, where the statistics of ULF wave power spectra during coronal mass ejections (CMEs) are presented.
View Article and Find Full Text PDFThe dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies.
View Article and Find Full Text PDFThe Van Allen radiation belts are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth's magnetic field. Their properties vary according to solar activity and they represent a hazard to satellites and humans in space. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts.
View Article and Find Full Text PDF