Cardiac fibroblasts are pivotal regulators of cardiac homeostasis and are essential in the repair of the heart after myocardial infarction (MI), but their function can also become dysregulated, leading to adverse cardiac remodelling involving both fibrosis and hypertrophy. MicroRNAs (miRNAs) are noncoding RNAs that target mRNAs to prevent their translation, with specific miRNAs showing differential expression and regulation in cardiovascular disease. Here, we show that miR-214-3p is enriched in the fibroblast fraction of the murine heart, and its levels are increased with cardiac remodelling associated with heart failure, or in the acute phase after experimental MI.
View Article and Find Full Text PDFDistinct populations of stretch-sensitive mechanoreceptors attached to myelinated vagal afferents are found in the heart and adjoining coronary and pulmonary circulations. Receptors at atrio-venous junctions appear to be involved in control of intravascular volume. These atrial receptors influence sympathetic control of the heart and kidney, but contribute little to reflex control of systemic vascular resistance.
View Article and Find Full Text PDFBackground And Aims: Transglutaminase (TG) 2 and Factor (F) XIII-A have both been implicated in cardiovascular protection and repair. This study was designed to differentiate between two competing hypotheses: that TG2 and FXIII-A mediate these functions in mice by fulfilling separate roles, or that they act redundantly in this respect.
Methods: Atherosclerosis was assessed in brachiocephalic artery plaques of fat-fed mixed strain apolipoprotein (Apo)e deficient mice that lacked either or both transglutaminases.
Piezo1 is a mechanosensitive cation channel with widespread physiological importance; however, its role in the heart is poorly understood. Cardiac fibroblasts help preserve myocardial integrity and play a key role in regulating its repair and remodeling following stress or injury. Here we investigated Piezo1 expression and function in cultured human and mouse cardiac fibroblasts.
View Article and Find Full Text PDFIt has been hypothesized that interleukin-1alpha (IL-1α) is released from damaged cardiomyocytes following myocardial infarction (MI) and activates cardiac fibroblasts via its receptor (IL-1R1) to drive the early stages of cardiac remodeling. This study aimed to definitively test this hypothesis using cell type-specific IL-1α and IL-1R1 knockout (KO) mouse models. A floxed Il1α mouse was created and used to generate a cardiomyocyte-specific IL-1α KO mouse line (MIL1AKO).
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
February 2019
Right heart failure is the major cause of death in Pulmonary Artery Hypertension (PAH) patients but is not a current, specific therapeutic target. Pre-clinical studies have shown that adrenoceptor blockade can improve cardiac function but the mechanisms of action within right ventricular (RV) myocytes are unknown. We tested whether the β-adrenoceptor blocker metoprolol could improve RV myocyte function in an animal model of PAH, by attenuating adverse excitation-contraction coupling remodeling.
View Article and Find Full Text PDFRecent studies suggest that cardiac fibroblast-specific p38α MAPK contributes to the development of cardiac hypertrophy, but the underlying mechanism is unknown. Our study used a novel fibroblast-specific, tamoxifen-inducible p38α knockout (KO) mouse line to characterize the role of fibroblast p38α in modulating cardiac hypertrophy, and we elucidated the mechanism. Myocardial injury was induced in tamoxifen-treated Cre-positive p38α KO mice or control littermates via chronic infusion of the β-adrenergic receptor agonist isoproterenol.
View Article and Find Full Text PDFPassive properties of the myocardium influence diastolic filling and cardiac output. In heart failure, changes in contributors to the passive properties of the ventricle, such as titin and collagen, and loss of the metabolic enzyme creatine kinase, increase resistance to filling resulting in diastolic dysfunction. Pulmonary artery hypertension (PAH) arises from interactions between the pulmonary vasculature and the right ventricle (RV) which ultimately leads to RV failure.
View Article and Find Full Text PDFMammalian biology adapts to physical activity but the molecular mechanisms sensing the activity remain enigmatic. Recent studies have revealed how Piezo1 protein senses mechanical force to enable vascular development. Here, we address Piezo1 in adult endothelium, the major control site in physical activity.
View Article and Find Full Text PDFMyocardial injury in mammals leads to heart failure through pathological cardiac remodelling that includes hypertrophy, fibrosis and ventricular dilatation. Central to this is inability of the mammalian cardiomyocyte to self-renew due to entering a quiescent state after birth. Modulation of the cardiomyocyte cell-cycle after injury is therefore a target mechanism to limit damage and potentiate repair and regeneration.
View Article and Find Full Text PDFAim: To investigate the effect of Tenascin C (TNC) on the expression of pro-inflammatory cytokines and matrix metalloproteinases in human cardiac myofibroblasts (CMF).
Methods: CMF were isolated and cultured from patients undergoing coronary artery bypass grafting. Cultured cells were treated with either TNC (0.
Our objective was to investigate the role of creatine kinase in the contractile dysfunction of right ventricular failure caused by pulmonary artery hypertension. Pulmonary artery hypertension and right ventricular failure were induced in rats by monocrotaline and compared to saline-injected control animals. In vivo right ventricular diastolic pressure-volume relationships were measured in anesthetized animals; diastolic force-length relationships in single enzymatically dissociated myocytes and myocardial creatine kinase levels by Western blot.
View Article and Find Full Text PDFCardiac dysfunction is commonly associated with high-blood-pressure-induced cardiomyocyte hypertrophy, in response to aberrant renin-angiotensin system (RAS) activity. Ensuing pathological remodelling promotes cardiomyocyte death and cardiac fibroblast activation, leading to cardiac fibrosis. The initiating cellular mechanisms that underlie this progressive disease are poorly understood.
View Article and Find Full Text PDFWe demonstrate the synergistic benefits of using multiple technologies to investigate complex multi-scale biological responses. The combination of reductionist and integrative methodologies can reveal novel insights into mechanisms of action by tracking changes of in vivo phenomena to alterations in protein activity (or vice versa). We have applied this approach to electrical and mechanical remodelling in right ventricular failure caused by monocrotaline-induced pulmonary artery hypertension in rats.
View Article and Find Full Text PDFMissense mutations in ATP1A3 encoding Na(+),K(+)-ATPase α3 have been identified as the primary cause of alternating hemiplegia of childhood (AHC), a motor disorder with onset typically before the age of 6 months. Affected children tend to be of short stature and can also have epilepsy, ataxia and learning disability. The Na(+),K(+)-ATPase has a well-known role in maintaining electrochemical gradients across cell membranes, but our understanding of how the mutations cause AHC is limited.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
June 2012
Pulmonary hypertension provokes right heart failure and arrhythmias. Better understanding of the mechanisms underlying these arrhythmias is needed to facilitate new therapeutic approaches for the hypertensive, failing right ventricle (RV). The aim of our study was to identify the mechanisms generating arrhythmias in a model of RV failure induced by pulmonary hypertension.
View Article and Find Full Text PDFObjective: Sympathetic nerve hyperactivity has been associated with hypertension and heart failure and their cardiovascular complications. The α2-adrenergic receptors have been proposed to play a prominent role in the control of sympathetic neural output, and their malfunction to constitute a potential central mechanism for sympathetic hyperactivity of essential hypertension. Reports on the relationship between variant alleles of α2-adrenergic receptor subtypes and sympathetic drive or its effects, however, have not been consistent.
View Article and Find Full Text PDFAims: Sustained hypertension leads to cardiac hypertrophy that can progress, through pathological remodelling, to heart failure. Abnormality of the renin-angiotensin system (RAS) has been strongly implicated in this process. Although hypertrophy in human is an established risk factor independent of blood pressure (BP), separation of remodelling in response to local cues within the differentiated myocardium from that related to pressure overload is unresolved.
View Article and Find Full Text PDFThe effects of hypobaric hypoxia in visitors depend not only on the actual elevation but also on the rate of ascent. There are increases in sympathetic activity resulting in increases in systemic vascular resistance, blood pressure and heart rate. Pulmonary vasoconstriction leads to pulmonary hypertension, particularly during exercise.
View Article and Find Full Text PDFThe effects of hypobaric hypoxia in visitors depend not only on the actual elevation but also on the rate of ascent. Sympathetic activity increases and there are increases in blood pressure and heart rate. Pulmonary vasoconstriction leads to pulmonary hypertension, particularly during exercise.
View Article and Find Full Text PDFThe central nucleus of amygdala (CeA) participates in cardiovascular regulation during emotional behaviour but it has not been established whether any of these effects are mediated through its direct connections to blood pressure-regulating neurones in the rostral ventrolateral medulla (RVLM). The RVLM contains barosensitive neurones that maintain resting blood pressure via their projections to sympathetic preganglionic neurones in the thoracic spinal cord. In this study on rats, we used combined anterograde neuronal tracing of CeA projections with confocal and electron microscopic immunohistochemical detection of phenylethanolamine-N-methyltransferase, the adrenaline-synthesizing enzyme present in C1 catecholamine neurones of the RVLM, and Fos, the protein product of the c-fos proto-oncogene.
View Article and Find Full Text PDFBackground: Leptin induces relaxation of vascular smooth muscle through an endothelium-dependent release of nitric oxide (EDNO) and administration of a high-salt diet reduces the relaxation of vessels to EDNO. We would, therefore, predict that salt loading would reduce the leptin-induced dilatation. However, in salt-loaded animals the relaxation to acetylcholine is maintained through an endothelial-dependent hypopolarizing factor instead of EDNO.
View Article and Find Full Text PDFDistension of the main pulmonary artery and its bifurcation are known to result in a reflex vasoconstriction and increased respiratory drive; however, these responses are observed at abnormally high distending pressures. In this study we recorded afferent activity from pulmonary arterial baroreceptors to investigate their stimulus-response characteristics and to determine whether they are influenced by physiological changes in intrathoracic pressure. In chloralose-anaesthetized dogs, a cardiopulmonary bypass was established, the pulmonary trunk and its main branches were vascularly isolated and perfused with venous blood at pulsatile pressures designed to simulate the normal pulmonary arterial pressure waveform.
View Article and Find Full Text PDF