This review summarizes the recent Global Meningococcal Initiative (GMI) regional meeting, which explored meningococcal disease in North America. Invasive meningococcal disease (IMD) cases are documented through both passive and active surveillance networks. IMD appears to be decreasing in many areas, such as the Dominican Republic (2016: 18 cases; 2021: 2 cases) and Panama (2008: 1 case/100,000; 2021: <0.
View Article and Find Full Text PDFOne of the most important crops worldwide is wheat. Wheat domestication took place about 10,000 years ago. Not only that its wild progenitors have been discovered and phenotypically characterized, but their genomes were also sequenced and compared to modern wheat.
View Article and Find Full Text PDFRollout of meningococcal serogroup A conjugate vaccine in Africa started in 2010, aiming to eliminate meningitis outbreaks, in meningitis belt countries. Since then, studies have been conducted, primarily using isolates, to assess the vaccine impact on the distribution of meningococcal strains in the region. Here, we implemented an innovative, culture-free whole-genome sequencing approach on almost 400 clinical specimens collected between 2017 and 2019 from meningococcal meningitis cases in 6 African countries.
View Article and Find Full Text PDFTogo has reported seasonal meningitis outbreaks caused by non-Neisseria meningitidis serogroup A (NmA) pathogens since the introduction of meningococcal serogroup A conjugate vaccine (MACV, MenAfriVac) in 2014. From 2016 to 2017, NmW caused several outbreaks. In early 2019, a NmC outbreak was detected in the Savanes region of Togo and its investigation is described here.
View Article and Find Full Text PDFUrethral infections caused by an emerging nongroupable (NG) urethrotropic clade of Neisseria meningitidis were first reported in the United States in 2015 (the "U.S. NmNG urethritis clade").
View Article and Find Full Text PDFGramineous plants protect their seeds from a variety of biotic stresses by producing toxic and deterrent secondary metabolites such as benzoxazinoids. It is unclear how the composition and abundance of these natural toxins has changed over the course of crop-plant domestication. To address this uncertainty, we characterized differences in metabolic levels of benzoxazinoids and their derivatives, between four lines of tetraploid wheat: wild emmer wheat (WEW), the direct progenitor of modern wheat; non-fragile domesticated emmer wheat (DEW), which was first domesticated about 11,000 years ago; the subsequently developed non-fragile and free-threshing durum landraces (LD); and modern durum (MD) varieties.
View Article and Find Full Text PDFJ Theor Biol
February 2021
DNA molecules containing repetitive motifs are prone to expand in their lengths. Once there appear a head to tail tandem of two identical DNA sequences in the system, they can propagate indefinitely by the mechanism involving cycles of staggered annealing of complementary DNA strands of variable lengths and polymerase mediated filling-in of the generated overhangs. Microgene Polymerization Reaction (MPR) is an experimental model for expansion of short repetitive DNA to longer lengths.
View Article and Find Full Text PDFis a leading cause of bacterial meningitis and sepsis worldwide and an occasional cause of meningococcal urethritis. When isolates are unavailable for surveillance or outbreak investigations, molecular characterization of pathogens needs to be performed directly from clinical specimens, such as cerebrospinal fluid (CSF), blood, or urine. However, genome sequencing of specimens is challenging because of low bacterial and high human DNA abundances.
View Article and Find Full Text PDFdGTP starvation, a newly discovered phenomenon in which cells are starved specifically for the DNA precursor dGTP, leads to impaired growth and, ultimately, cell death. Phenomenologically, it represents an example of nutritionally induced unbalanced growth: cell mass amplifies normally as dictated by the nutritional status of the medium, but DNA content growth is specifically impaired. The other known example of such a condition, thymineless death (TLD), involves starvation for the DNA precursor dTTP, which has been found to have important chemotherapeutic applications.
View Article and Find Full Text PDFThe ATP-bound form of the Escherichia coli DnaA replication initiator protein remodels the chromosomal origin of replication, oriC, to load the replicative helicase. The primary mechanism for regulating the activity of DnaA involves the Hda and β clamp proteins, which act together to dramatically stimulate the intrinsic DNA-dependent ATPase activity of DnaA via a process termed Regulatory Inactivation of DnaA. In addition to hyperinitiation, strains lacking hda function also exhibit cold sensitive growth at 30°C.
View Article and Find Full Text PDFUnlabelled: Our laboratory recently discovered that Escherichia coli cells starved for the DNA precursor dGTP are killed efficiently (dGTP starvation) in a manner similar to that described for thymineless death (TLD). Conditions for specific dGTP starvation can be achieved by depriving an E. coli optA1 gpt strain of the purine nucleotide precursor hypoxanthine (Hx).
View Article and Find Full Text PDFThe Escherichia coli dgt gene encodes a dGTP triphosphohydrolase whose detailed role still remains to be determined. Deletion of dgt creates a mutator phenotype, indicating that the dGTPase has a fidelity role, possibly by affecting the cellular dNTP pool. In the present study, we have investigated the structure of the Dgt protein at 3.
View Article and Find Full Text PDFStarvation of cells for the DNA building block dTTP is strikingly lethal (thymineless death, TLD), and this effect is observed in all organisms. The phenomenon, discovered some 60 years ago, is widely used to kill cells in anticancer therapies, but many questions regarding the precise underlying mechanisms have remained. Here, we show for the first time that starvation for the DNA precursor dGTP can kill E.
View Article and Find Full Text PDFJ Mol Microbiol Biotechnol
January 2012
A new gene, cry11Bb2 from a field isolate of Bacillus thuringiensis, was cloned for expression in Escherichia coli. The encoded protein, with a deduced molecular mass of 89.5 kDa, exhibits 97 and 79% identities with the overlap regions of Cry11Bb1 from B.
View Article and Find Full Text PDFMol Microbiol
September 2011
The Escherichia coli dGTP triphosphohydrolase (dGTPase) encoded by the dgt gene catalyses the hydrolysis of dGTP to deoxyguanosine and triphosphate. The recent discovery of a mutator effect associated with deletion of dgt indicated participation of the triphosphohydrolase in preventing mutagenesis. Here, we have investigated the possible involvement of dgt in facilitating thymine utilization through its ability to provide intracellular deoxyguanosine, which is readily converted by the DeoD phosphorylase to deoxyribose-1-phosphate, the critical intermediate that enables uptake and utilization of thymine.
View Article and Find Full Text PDFThe gene cyt1Aa is one of the genes in the complex determining the mosquito larvicidity of Bacillus thuringiensis subsp. israelensis. Previous cloning in Escherichia coli resulted in a 48-bp addition upstream, encoding a chimera.
View Article and Find Full Text PDFRepetitive DNA is a periodic copolymer with the intrinsic property of exponential propagation to longer repeats. Microgene polymerization reaction (MPR) is a model system in which a short nonrepetitive homo-duplex DNA evolves to multiple repetitive products during heat-cool cycles. The mechanism underlying this process involves staggered annealing of complementary DNA strands of variable lengths and polymerase-mediated filling-in of the generated overhangs.
View Article and Find Full Text PDFThe microgene polymerization reaction (MPR) generates head-to-tail tandem repeats from homoduplexes (HDs). In MPR initiation, one HD putatively aligns two others in the proximity required to form a nucleation complex, thus allowing the DNA polymerase to skip the intertemplate gap and generate an initial doublet (ID) prone to repeat propagation. The current investigation refines this stage by additional thermodynamic considerations and elucidates the fundamental mechanism underlying propagation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2008
Microgene Polymerization Reaction (MPR) is used as an experimental system to artificially simulate evolution of short, non-repetitive homo-duplex DNA into multiply-repetitive products that can code for functional proteins. Blunt-end ligation by DNA polymerase is crucial in expansion of homo-duplexes (HDs) into head-to-tail multiple repeats in MPR. The propagation mechanism is known, but formation of the initial doublet (ID) by juxtaposing two HDs and polymerization through the gap has been ambiguous.
View Article and Find Full Text PDFIn an attempt to endow Cyt1Ca with Cyt1Aa-like antibacterial activity, both derived from Bacillus thuringiensis subsp. israelensis, two amino acids were replaced, E117V and N125A, so as to raise the hydrophobicity of the corresponding region, considered to be the membrane-active motif. The clones obtained included multiple repeats of VIEVLKSLLGIALA, corresponding to head-to-tail polymerization of the primer, translated in frame with Cyt1Ca.
View Article and Find Full Text PDFThe larvicidal activity of Bacillus thuringiensis subsp. israelensis against dipteran larvae is determined by four major polypeptides of the parasporal crystalline body produced during sporulation. Cyt1Aa shows the lowest toxicity when used alone but is the most synergistic with any of the other proteins.
View Article and Find Full Text PDFInsecticidal crystal proteins of Bacillus thuringiensis belong to two unrelated toxin families: receptor-specific Cry toxins against insects and Cyt toxins that lyse a broad range of cells, including bacteria, via direct binding to phospholipids. A new cyt-like open reading frame (cyt1Ca) encoding a 60-kDa protein, has recently been discovered (C. Berry et al.
View Article and Find Full Text PDFCompaction of the Escherichia coli nucleoid in the cell's centre was associated with the loss of colony-forming ability; these effects were caused by induction of Cyt1Aa, the cytotoxic 27 kDa protein from Bacillus thuringiensis subsp. israelensis. Cyt1Aa-affected compaction of the nucleoids was delayed but eventually more intense than compaction caused by chloramphenicol.
View Article and Find Full Text PDF