Publications by authors named "Mark Hermann Rummeli"

Since the advent of monolayered 2D transition metal carbide and nitrides (MXenes) in 2011, the number of different monolayer systems and the study thereof have been on the rise. Mo Ti C is one of the least studied MXenes and new insights to this material are of value to the field. Here, the stability of Mo Ti C under electron irradiation is investigated.

View Article and Find Full Text PDF

The origin of charge density wave (CDW) observed in low-dimensional systems is, for long, a subject of intensive debate in contemporary condensed matter physics. Specifically, a simple and well established model, namely, the Peierls instability is often (but not always) used to clearly explain CDW states in real systems. Here, first-principles density functional theory calculations are used to show CDW formation at a one-dimensional interface embedded in a lateral heterostructure comprising blue and black phosphorene, even at room temperature.

View Article and Find Full Text PDF

TiO₂ nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li⁺ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO₂/CoO nanotubes composite by a two-step synthesis method.

View Article and Find Full Text PDF

Mass production of high-quality graphene with low cost is the footstone for its widespread practical applications. We present herein a self-limited growth approach for producing graphene powders by a small-methane-flow chemical vapour deposition process on naturally abundant and industrially widely used diatomite (biosilica) substrates. Distinct from the chemically exfoliated graphene, thus-produced biomorphic graphene is highly crystallized with atomic layer-thickness controllability, structural designability and less noncarbon impurities.

View Article and Find Full Text PDF

A seashell-based CVD technique for preparing three-dimensional (3D) graphene foams is reported. The graphene sheets in thus-obtained foams are seamlessly interconnected into a 3D flexible network, forming highly porous materials with negligible non-carbon impurities, ultralow density, and outstanding mechanical flexibility and electrical conductivity. These 3D graphene foams demonstrate a fast adsorption performance toward various oils and organic solvents, with adsorption capacity up to 250-fold weight gain.

View Article and Find Full Text PDF

Chemical vapor deposition is used to synthesize few-layer graphene on micro crystalline sodium chloride (NaCl) powder. The water-soluble nature of NaCl makes it convenient to produce free standing graphene layers via a facile and low-cost approach. Unlike traditional metal-catalyzed or oxygen-aided growth, the micron-size NaCl crystal planes play an important role in the nucleation and growth of few-layer graphene.

View Article and Find Full Text PDF

The initial isolation of graphene in 2004 spawned massive interest in this two-dimensional pure sp(2) carbon structure due to its incredible electrical, optical, mechanical, and thermal effects. This in turn led to the rapid development of various characterization tools for graphene. Examples include Raman spectroscopy and scanning tunneling microscopy.

View Article and Find Full Text PDF

Background: Iron oxide nanoparticles hold great promise for future biomedical applications. To this end numerous studies on iron oxide nanoparticles have been conducted. One aspect these studies reveal is that nanoparticle size and shape can trigger different cellular responses through endocytic pathways, cell viability and early apoptosis.

View Article and Find Full Text PDF

The initial development of carbon nanotube synthesis revolved heavily around the use of 3d valence transition metals such as Fe, Ni, and Co. More recently, noble metals (e.g.

View Article and Find Full Text PDF