Publications by authors named "Mark Haacke"

Background And Objectives: Accumulation of metals quantified by quantitative susceptibility mapping (QSM) in deep gray matter (DGM) and their impact on cognition have not been studied in patients with liver cirrhosis. This study aims to use QSM to investigate the association between DGM susceptibility and cognition in cirrhotic patients.

Methods: Thirty cirrhotic patients and 30 age-, gender-, and education-matched controls were imaged using a multiecho gradient-echo sequence for QSM analysis in a 3T scanner.

View Article and Find Full Text PDF

Background: White matter (WM) fiber tracts in the brainstem communicate with various regions in the cerebrum, cerebellum, and spinal cord. Clinically, small lesions, malformations, or histopathological changes in the brainstem can cause severe neurological disorders. A direct and non-invasive assessment approach could bring valuable information about the intricate anatomical variations of the white matter fiber tracts and nuclei.

View Article and Find Full Text PDF

Objectives: To differentiate cerebral microbleeds (CMBs) and calcifications using quantitative susceptibility mapping (QSM).

Methods: CMBs were visualized and located using QSM from susceptibility-weighted imaging data collected on a 3-T MR scanner. Calcifications of the pineal gland and the choroid plexus were localized first using CT.

View Article and Find Full Text PDF

Studying the relationship between cerebral oxygen utilization and cognitive impairment is essential to understanding neuronal functional changes in the disease progression of multiple sclerosis (MS). This study explores the potential of using venous susceptibility in internal cerebral veins (ICVs) as an imaging biomarker for cognitive impairment in relapsing-remitting MS (RRMS) patients. Quantitative susceptibility mapping derived from fully flow-compensated MRI phase data was employed to directly measure venous blood oxygen saturation levels (SO) in the ICVs.

View Article and Find Full Text PDF

Objective: This study aimed to examine the structural alterations of the deep gray matter (DGM) in the basal ganglia circuitry of Parkinson's disease (PD) patients with freezing of gait (FOG) using quantitative susceptibility mapping (QSM) and neuromelanin-sensitive magnetic resonance imaging (NM-MRI).

Methods: Twenty-five (25) PD patients with FOG (PD-FOG), 22 PD patients without FOG (PD-nFOG), and 30 age- and sex-matched healthy controls (HCs) underwent 3-dimensional multi-echo gradient recalled echo and NM-MRI scanning. The mean volume and susceptibility of the DGM on QSM data and the relative contrast (NM) and volume (NM) of the substantia nigra pars compacta on NM-MRI were analyzed among groups.

View Article and Find Full Text PDF

The STRAT-PARK initiative aims to provide a platform for stratifying Parkinson's disease (PD) into biological subtypes, using a bottom-up, multidisciplinary biomarker-based and data-driven approach. PD is a heterogeneous entity, exhibiting high interindividual clinicopathological variability. This diversity suggests that PD may encompass multiple distinct biological entities, each driven by different molecular mechanisms.

View Article and Find Full Text PDF

Background: The choroid plexus (ChP), a densely vascularized structure, has drawn increasing attention for its involvement in brain homeostasis and waste clearance. While the volumetric changes have been explored in many imaging studies, few studies have investigated the vascular degeneration associated with aging in the ChP.

Purpose: To investigate the sub-structural characteristics of the ChP, particularly the vascular compartment using high-resolution 7T imaging enhanced with Ferumoxytol, an ultrasmall super-paramagnetic iron oxide, which greatly increase the susceptibility contrast for vessels.

View Article and Find Full Text PDF

Mapping the small venous vasculature of the hippocampus in vivo is crucial for understanding how functional changes of hippocampus evolve with age. Oxygen utilization in the hippocampus could serve as a sensitive biomarker for early degenerative changes, surpassing hippocampal tissue atrophy as the main source of information regarding tissue degeneration. Using an ultrahigh field (7T) susceptibility-weighted imaging (SWI) sequence, it is possible to capture oxygen-level dependent contrast of submillimeter-sized vessels.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is associated with the loss of neuromelanin (NM) and increased iron in the substantia nigra (SN). Magnetization transfer contrast (MTC) is widely used for NM visualization but has limitations in brain coverage and scan time. This study aimed to develop a new approach called Proton-density Enhanced Neuromelanin Contrast in Low flip angle gradient echo (PENCIL) imaging to visualize NM in the SN.

View Article and Find Full Text PDF

Background: Enlarged deep medullary veins (EDMVs) in patients with Sturge-Weber syndrome (SWS) may channel venous blood from the surface to the deep vein system in brain regions affected by the leptomeningeal venous malformation. Thus, the quantification of EDMV volume may provide an objective imaging marker for this vascular compensatory process. The present study proposes a novel analytical method to quantify enlarged EDMV volumes in the affected hemisphere of patients with unilateral SWS.

View Article and Find Full Text PDF

Introduction: Functional connectivity in the brain is often studied with blood oxygenation level dependent (BOLD) resting state functional magnetic resonance imaging (rsfMRI), but the BOLD signal is several steps removed from neuronal activity. Arterial spin labeling (ASL), particularly pulsed ASL (PASL), has also the capacity to measure the blood-flow changes in response to activity. In this paper, we investigated the feasibility of extracting major brain networks from PASL data, in contrast with rsfMRI analsyis.

View Article and Find Full Text PDF

Histopathological studies suggest that cerebral small vessel tortuosity is crucial in age-related blood flow reduction and cellular degeneration. However, in vivo evidence is lacking. Here, we used Ferumoxytol-enhanced 7T MRI to directly visualize cerebral small vessels (<300 µm), enabling the identification of vascular tortuosity and exploration of its links to age, tissue atrophy, and vascular risk factors.

View Article and Find Full Text PDF

Studying the relationship between cerebral oxygen utilization and cognitive impairment is essential to understanding neuronal functional changes in the disease progression of multiple sclerosis (MS). This study explores the potential of using venous susceptibility in internal cerebral veins (ICVs) as an imaging biomarker for cognitive impairment in relapsing-remitting MS (RRMS) patients. Quantitative susceptibility mapping derived from fully flow-compensated MRI phase data was employed to directly measure venous blood oxygen saturation levels (SO) in the ICVs.

View Article and Find Full Text PDF

Background: Nigrosome 1 (N1), the largest nigrosome region in the ventrolateral area of the substantia nigra pars compacta, is identifiable by the "N1 sign" in long echo time gradient echo MRI. The N1 sign's absence is a vital Parkinson's disease (PD) diagnostic marker. However, it is challenging to visualize and assess the N1 sign in clinical practice.

View Article and Find Full Text PDF

Increasing the signal-to-noise ratio (SNR) has always been of critical importance for magnetic resonance imaging. Although increasing field strength provides a linear increase in SNR, it is more and more costly as field strength increases. Therefore, there is a major effort today to use signal processing methods to improve SNR since it is more efficient and economical.

View Article and Find Full Text PDF

Purpose: Although lesion dissemination in time is a defining characteristic of multiple sclerosis (MS), there is a limited understanding of lesion heterogeneity. Currently, conventional sequences such as fluid attenuated inversion recovery (FLAIR) and T1-weighted (T1W) data are used to assess MS lesions qualitatively. Estimating water content could provide a measure of local tissue rarefaction, or reduced tissue density, resulting from chronic inflammation.

View Article and Find Full Text PDF

The goal of this work was to explore the total iron burden of cerebral microbleeds (CMBs) using a semi-automatic quantitative susceptibility mapping and to establish its effect on brain atrophy through the mediating effect of white matter hyperintensities (WMH). A total of 95 community-dwelling people were enrolled. Quantitative susceptibility mapping (QSM) combined with a dynamic programming algorithm (DPA) was used to measure the characteristics of 1309 CMBs.

View Article and Find Full Text PDF

The accumulation of harmful substances has long been recognized as a likely cause of many neurodegenerative diseases. The two classic brain clearance pathways are cerebrospinal fluid (CSF) and vascular circulation systems. Since the discovery of the glymphatic system, research on the CSF pathway has gained momentum, and impaired CSF clearance has been implicated in virtually all neurodegenerative animal models.

View Article and Find Full Text PDF

Objectives: The objective of this work was to investigate the application of 2D Time-of-Flight (TOF) magnetic resonance angiography (MRA) to observe the placental vasculature at both 1.5 T and 3 T.

Methods: Fifteen appropriate for gestational age (AGA) (GA: 29.

View Article and Find Full Text PDF

Susceptibility-weighted imaging (SWI) is a MR imaging technique suited to detect structural and microstructural abnormalities in traumatic brain injury (TBI). This review article provide an insight in to the physics principles of SWI and its clinical application in unraveling the complex interaction of the biophysical mechanisms of head injury. Literature evidences support SWI as the most ideal sequence in detection of microbleeds, which is the "tip of the iceberg" biomarker of microvascular injuries.

View Article and Find Full Text PDF

Background And Purpose: Early diagnosis of Parkinson's disease (PD) is still a clinical challenge. Most previous studies using manual or semi-automated methods for segmenting the substantia nigra (SN) are time-consuming and, despite raters being well-trained, individual variation can be significant. In this study, we used a template-based, automatic, SN subregion segmentation pipeline to detect the neuromelanin (NM) and iron features in the SN and SN pars compacta (SNpc) derived from a single 3D magnetization transfer contrast (MTC) gradient echo (GRE) sequence in an attempt to develop a comprehensive imaging biomarker that could be used to diagnose PD.

View Article and Find Full Text PDF

The visualization and identification of the deep cerebellar nuclei (DCN) (dentate [DN], interposed [IN] and fastigial nuclei [FN]) are particularly challenging. We aimed to visualize the DCN using quantitative susceptibility mapping (QSM), predict the contrast differences between QSM and T2* weighted imaging, and compare the DCN volume and susceptibility in movement disorder populations and healthy controls (HCs). Seventy-one Parkinson's disease (PD) patients, 39 essential tremor patients, and 80 HCs were enrolled.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored changes in Susceptibility Weighted Imaging (SWI) signals in the veins of patients with deep-seated arterio-venous malformations (AVMs) after they underwent stereotactic radiosurgery (SRS).
  • It involved 32 patients whose pre- and post-treatment MRI scans were analyzed over 6, 12, and 24 months to assess AVM size and changes in venous signal intensity.
  • Results showed that post-SRS, there was a consistent decrease in the size of AVMs and their related SWI signal grades, indicating a reliable method to track the progress of AV shunting reduction.
View Article and Find Full Text PDF

High-resolution susceptibility weighted imaging (SWI) provides unique contrast to small venous vasculature. The conspicuity of these mesoscopic veins, such as deep medullary veins in white matter, is subject to change from SWI venography when venous oxygenation in these veins is altered due to oxygenated blood susceptibility changes. The changes of visualization in small veins shows potential to depict regional changes of oxygen utilization and/or vascular density changes in the aging brain.

View Article and Find Full Text PDF