The utility of multigene expression assays in advanced (≥ 4 positive lymph nodes) early breast cancer (EBC) is limited. We conducted exploratory transcriptomic analysis of 758 genes (Breast Cancer 360 panel, nCounter platform; NanoString) in primary tumor samples collected during a phase 3 trial comparing adjuvant taxane-containing dose-dense chemotherapy (ddCTX) versus standard-dosed chemotherapy (stCTX) in resected EBC with ≥ 4 positive lymph nodes. Prognostic and predictive associations with disease-free survival (DFS) and overall survival (OS) were evaluated by Cox regression with false discovery rate (FDR) adjustment.
View Article and Find Full Text PDFA substantial minority of early breast cancer (EBC) patients relapse despite their tumors achieving pathologic complete response (pCR) after neoadjuvant therapy. We compared gene expression (BC360; nCounter platform; NanoString) between primary tumors of patients with post-pCR relapse (N = 14) with: (i) matched recurrent tumors from same patient (intraindividual analysis); and (ii) primary tumors from matched controls with pCR and no relapse (N = 41; interindividual analysis). Intraindividual analysis showed lower estrogen receptor signaling signature expression in recurrent tumors versus primaries (logFC = -0.
View Article and Find Full Text PDFThere is a strong biologic rationale that poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors may benefit a broader range of metastatic breast cancer (MBC) patients than covered by current approvals, which require a germline sequence variant affecting function. We report a patient with germline/somatic wild-type MBC, who had a dramatic response to the PARP inhibitor olaparib of at least 8 months' duration. The patient is a 37-year-old woman with recurrent, hormone receptor-positive, HER2-negative MBC that had progressed despite hormonal therapy and palbociclib.
View Article and Find Full Text PDFERK and p38 MAP kinases, acting through the downstream mitogen- and stress-activated kinase 1/2 (MSK1/2), elicit histone H3 phosphorylation on a subfraction of nucleosomes--including those at Fos and Jun--concomitant with gene induction. S10 and S28 on the H3 tail have both been shown to be phospho-acceptors in vivo. Both phospho-epitopes appear with similar time-courses and both occur on H3 tails that are highly sensitive to TSA-induced hyperacetylation, similarities which might suggest that MSK1/2 phosphorylates both sites on the same H3 tails.
View Article and Find Full Text PDFGenome-wide and gene-specific changes in histone H3 phosphorylation during heat shock have recently been described using two well-established experimental models, the "puffing" of heat shock loci in Drosophila polytene chromosomes and the induction of hsp70 mRNA transcripts in cultured mouse cells. Despite conservation of the molecular participants and overall stress response in these two organisms, some striking differences have emerged. Here, we summarize accounts of heat shock-modulated histone phosphorylation in Drosophila and mouse cells highlighting these differences.
View Article and Find Full Text PDFCells respond to mitogenic or stress stimuli by the rapid induction of immediate-early (IE) genes, which occurs concomitantly with the phosphorylation of histone H3 and the high-mobility-group protein HMG-14. In mammalian cells this response is mediated via ERK and p38 MAP kinase pathways, but the identity of the downstream kinase that phosphorylates histone H3 has been contentious. One study, based on Coffin- Lowry cells defective in RSK2, reported that RSK2 was the histone H3 kinase, while a second study, based on the efficiency of RSKs and MSKs as in vitro histone H3 kinases, and their relative susceptibility to kinase inhibitors, suggested that MSKs were responsible.
View Article and Find Full Text PDF