Publications by authors named "Mark Goltz"

Modeling contaminant transport in fractured-rock matrix systems often approximates the effect of the parabolic flow field in the fractures (i.e., Poiseuille flow) on transport by adding a dispersion term to the uniform flow field.

View Article and Find Full Text PDF

This study explores the use of a butyrylcholinesterase (BChE)-based, reversible reaction biosensor using screen-printed electrodes (SPEs) having a smaller working surface area than the single-use electrodes previously studied. Previous research demonstrated the prospective application of a single-use biosensor fabricated with an acetylcholinesterase (AChE) enzyme encapsulated in peptide nanotubes (PNTs) and enhanced with horseradish peroxidase (HRP) to detect organophosphorus compounds (OPCs) in aqueous and gas phases. In the current study, potential improvements to the biosensor are investigated.

View Article and Find Full Text PDF

To greatly simplify their solution, the equations describing radial advective/dispersive transport to an extraction well in a porous medium typically neglect molecular diffusion. While this simplification is appropriate to simulate transport in the saturated zone, it can result in significant errors when modeling gas phase transport in the vadose zone, as might be applied when simulating a soil vapor extraction (SVE) system to remediate vadose zone contamination. A new analytical solution for the equations describing radial gas phase transport of a sorbing contaminant to an extraction well is presented.

View Article and Find Full Text PDF

Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications.

View Article and Find Full Text PDF

Peptide nanotubes (PNTs) encapsulating horseradish peroxidase and surface coated with acetylcholinesterase (AChE) were attached to gold screen printed electrodes to construct a novel gas phase organophosphate (OP) biosensor. When the sensor with the AChE enzyme is put in contact with acetylthiocholine (ATCh), the ATCh is hydrolyzed to produce thiocholine, which is then oxidized by horseradish peroxidase (HRP). Direct electron transfer between HRP and electrode is achieved through PNTs.

View Article and Find Full Text PDF

Smectitic clays have a flexible structure that may be impacted by contact with dense nonaqueous phase liquids (DNAPLs) present at hazardous waste sites. Measurements of the basal spacing of air-dry clays contacted with pure chlorinated solvents and chlorinated DNAPL wastes showed that the intraparticle spacing is similar to that in air. Basal spacings of water-saturated clays contacted with pure chlorinated solvents are similar to those in contact with water, even after extended equilibration times (300 d).

View Article and Find Full Text PDF

The ability to quantify the mass flux of a groundwater contaminant that is leaching from a source area is critical to enable us to: (1) evaluate the risk posed by the contamination source and prioritize cleanup, (2) evaluate the effectiveness of source remediation technologies or natural attenuation processes, and (3) quantify a source term for use in models that may be applied to predict maximum contaminant concentrations in downstream wells. Recently, a number of new methods have been developed and subsequently applied to measure contaminant mass flux in groundwater in the field. However, none of these methods has been validated at larger than the laboratory-scale through a comparison of measured mass flux and a known flux that has been introduced into flowing groundwater.

View Article and Find Full Text PDF

When managing large-scale ground water contamination problems, it is often necessary to model flow and transport using finely discretized domains--for instance (1) to simulate flow and transport near a contamination source area or in the area where a remediation technology is being implemented; (2) to account for small-scale heterogeneities; (3) to represent ground water-surface water interactions; or (4) some combination of these scenarios. A model with a large domain and fine-grid resolution will need extensive computing resources. In this work, a domain decomposition-based assembly model implemented in a parallel computing environment is developed, which will allow efficient simulation of large-scale ground water flow and transport problems using domain-wide grid refinement.

View Article and Find Full Text PDF

Conventional methods to measure the hydraulic conductivity of an aquifer on a relatively large scale (10-100 m) require extraction of significant quantities of groundwater. This can be expensive, and otherwise problematic, when investigating a contaminated aquifer. In this study, innovative approaches that make use of tandem circulation wells to measure hydraulic conductivity are proposed.

View Article and Find Full Text PDF

Two technologies in combination, cometabolic bioremediation and in-well vapor stripping, were applied to reduce trichloroethylene (TCE) concentrations in groundwater at a contaminant source area without the need to pump contaminated groundwater to the surface for treatment. The vapor-stripping well reduced source TCE concentrations (as high as 6-9 mg/L) by over 95%. Effluent from the well then flowed to two bioremediation wells, where additional reductions of approximately 60% were achieved.

View Article and Find Full Text PDF

Filtration of Bacillus subtilis spores and the F-RNA phage MS2 (MS2) on a field scale in a coarse alluvial gravel aquifer was evaluated from the authors' previously published data. An advection-dispersion model that is coupled with first-order attachment kinetics was used in this study to interpret microbial concentration vs. time breakthrough curves (BTC) at sampling wells.

View Article and Find Full Text PDF

Setback distances between septic tank systems and the shorelines of Lake Okareka, New Zealand were determined from model simulations for a worst-case scenario, using the highest hydraulic conductivity and gradient measured in the field, removal rates of the microbial indicators (Escherichia coli and F-RNA phages) determined from a column experiment, and maximum values of the design criteria for the disposal system, and assuming an absence of an unsaturated zone, a continuous discharge of the raw effluent from a failed or non-complying treatment system (both indicators at concentrations of 1x10(7) counts/100 ml) into the groundwater and no sorption of pathogens in the aquifer. Modelling results suggest that the minimal setback distances were 16 m to satisfy the New Zealand Recreational Water Quality Guidelines for E. coli <126 per 100 ml (Ministry for the Environment, 1999) and 48 m to meet the Drinking-Water Standards for New Zealand 2000 for enteric virus <1 per 100 l (Ministry of Health, 2000).

View Article and Find Full Text PDF

In order to contain the movement of organic contaminants in groundwater, a subsurface sorption barrier consisting of sand or clay minerals coated with a cationic surfactant has been proposed. The effectiveness of such a sorption barrier might be affected by the presence of dissolved organic matter (DOM) in the groundwater. To study the impact of DOM on barrier performance, a series of batch experiments were performed by measuring naphthalene and phenanthrene sorption onto sand coated with cetylpyridinium chloride (CPC) and bentonite coated with hexadecyltrimethylammonium bromide (HDTMA) in the presence of various concentrations of DOM.

View Article and Find Full Text PDF

In this note, we applied the temporal moment solutions of [Das and Kluitenberg, 1996. Soil Sci. Am.

View Article and Find Full Text PDF

Both natural organic matter (NOM) and surfactants are known to enhance the apparent aqueous solubility of hydrophobic organic contaminants (HOCs) in aqueous systems. In this study, the combined effect of NOM and surfactants on enhancing the solubility of HOCs was investigated, since both may occur and affect the fate and transport of HOCs in natural aqueous environments. Experimental results indicated that the apparent solubility of naphthalene, phenanthrene, and pyrene in NOM and anionic surfactant solution was lower than their solubility in NOM solution alone.

View Article and Find Full Text PDF