Propranolol reduces experimental murine cerebral cavernous malformations (CCMs) and prevents embryonic caudal venous plexus (CVP) lesions in zebrafish that follow mosaic inactivation of . Because morpholino silencing of the β1 adrenergic receptor () prevents the embryonic CVP lesion, we proposed that plays a role in CCM pathogenesis. Here we report that zebrafish exhibited 86% fewer CVP lesions and 87% reduction of CCM lesion volume relative to wild type brood mates at 2dpf and 8-10 weeks stage, respectively.
View Article and Find Full Text PDFBackground: Heterogeneity in the severity of cerebral cavernous malformations (CCMs) disease, including brain bleedings and thrombosis that cause neurological disabilities in patients, suggests that environmental, genetic, or biological factors act as disease modifiers. Still, the underlying mechanisms are not entirely understood. Here, we report that mild hypoxia accelerates CCM disease by promoting angiogenesis, neuroinflammation, and vascular thrombosis in the brains of CCM mouse models.
View Article and Find Full Text PDFHow genetic lesions drive cell transformation and whether they can be circumvented without compromising function of non-transformed cells are enduring questions in oncology. Here we show that in mature T cells-in which physiologic clonal proliferation is a cardinal feature- constitutive transcription and loss in mice modeled aggressive human malignancy by reinforcing each other's oncogenic programs. This cooperation was supported by MYC-induced large neutral amino acid transporter chaperone SLC3A2 and dietary leucine, which in synergy with deletion overstimulated mTORC1 to promote mitochondrial fitness and MYC protein overexpression in a positive feedback circuit.
View Article and Find Full Text PDFCerebral cavernous malformation (CCM) is a hemorrhagic neurovascular disease with no currently available therapeutics. Prior evidence suggests that different cell types may play a role in CCM pathogenesis. The contribution of each cell type to the dysfunctional cellular crosstalk remains unclear.
View Article and Find Full Text PDFThe covalent reversible modification of proteins is a validated strategy for the development of probes and candidate therapeutics. However, the covalent reversible targeting of noncatalytic lysines is particularly challenging. Herein, we characterize the 2-hydroxy-1-naphthaldehyde (HNA) fragment as a targeted covalent reversible ligand of a noncatalytic lysine (Lys) of the Krev interaction trapped 1 (KRIT1) protein.
View Article and Find Full Text PDFCanonical interleukin-2 (IL-2) signaling via the high-affinity CD25-containing IL-2 receptor-Janus kinase (JAK)1,3-signal transducer and activator of transcription 5 (STAT5) pathway is essential for development and maintenance of CD4CD25Foxp3 regulatory T cells (Tregs) that support immune homeostasis. Here, we report that IL-2 signaling via an alternative CD25-chemokine receptor pathway promotes the suppressive function of Tregs. Using an antibody against CD25 that biases IL-2 signaling toward this alternative pathway, we establish that this pathway increases the suppressive activity of Tregs and ameliorates murine experimental autoimmune encephalomyelitis (EAE).
View Article and Find Full Text PDFTransp Res Rec
April 2023
The recent COVID-19 pandemic has led to a nearly world-wide shelter-in-place strategy. This raises several natural concerns about the safe relaxing of current restrictions. This article focuses on the design and operation of heating ventilation and air conditioning (HVAC) systems in the context of transportation.
View Article and Find Full Text PDFBackground: Thromboelastography (TEG) is used for real-time determination of hemostatic status in patients with acute risk of bleeding. Thrombin is thought to drive clotting in TEG through generation of polymerized fibrin and activation of platelets through protease-activated receptors (PARs). However, the specific role of platelet agonist receptors and signaling in TEG has not been reported.
View Article and Find Full Text PDFβ1 integrins are important in blood vessel formation and function, finely tuning the adhesion of endothelial cells to each other and to the extracellular matrix. The role of integrins in the vascular disease, cerebral cavernous malformation (CCM) has yet to be explored in vivo. Endothelial loss of the gene KRIT1 leads to brain microvascular defects, resulting in debilitating and often fatal consequences.
View Article and Find Full Text PDFRap1 GTPase drives assembly of the Mig-10/RIAM/Lamellipodin (MRL protein)-integrin-talin (MIT) complex that enables integrin-dependent lymphocyte functions. Here we used tandem affinity tag-based proteomics to isolate and analyze the MIT complex and reveal that Phostensin (Ptsn), a regulatory subunit of protein phosphatase 1, is a component of the complex. Ptsn mediates dephosphorylation of Rap1, thereby preserving the activity and membrane localization of Rap1 to stabilize the MIT complex.
View Article and Find Full Text PDFFront Cell Dev Biol
June 2022
Integrins regulate the adhesion and migration of blood cells to ensure the proper positioning of these cells in the environment. Integrins detect physical and chemical stimuli in the extracellular matrix and regulate signaling pathways in blood cells that mediate their functions. Integrins are usually in a resting state in blood cells until agonist stimulation results in a high-affinity conformation ("integrin activation"), which is central to integrins' contribution to blood cells' trafficking and functions.
View Article and Find Full Text PDFPatients with familial cerebral cavernous malformation (CCM) inherit germline loss of function mutations and are susceptible to progressive development of brain lesions and neurological sequelae during their lifetime. To date, no homologous circulating molecules have been identified that can reflect the presence of germ line pathogenetic CCM mutations, either in animal models or patients. We hypothesize that homologous differentially expressed (DE) plasma miRNAs can reflect the CCM germline mutation in preclinical murine models and patients.
View Article and Find Full Text PDFCerebral cavernous malformations are acquired vascular anomalies that constitute a common cause of central nervous system hemorrhage and stroke. The past 2 decades have seen a remarkable increase in our understanding of the pathogenesis of this vascular disease. This new knowledge spans genetic causes of sporadic and familial forms of the disease, molecular signaling changes in vascular endothelial cells that underlie the disease, unexpectedly strong environmental effects on disease pathogenesis, and drivers of disease end points such as hemorrhage.
View Article and Find Full Text PDFCerebral cavernous malformations (CCMs) are common neurovascular lesions caused by loss-of-function mutations in 1 of 3 genes, including KRIT1 (CCM1), CCM2, and PDCD10 (CCM3), and generally regarded as an endothelial cell-autonomous disease. Here we reported that proliferative astrocytes played a critical role in CCM pathogenesis by serving as a major source of VEGF during CCM lesion formation. An increase in astrocyte VEGF synthesis is driven by endothelial nitric oxide (NO) generated as a consequence of KLF2- and KLF4-dependent elevation of eNOS in CCM endothelium.
View Article and Find Full Text PDFMosaic inactivation of in humans causes cerebral cavernous malformations (CCMs) containing adjacent dilated blood-filled multi-cavernous lesions. We used CRISPR-Cas9 mutagenesis to induce mosaic inactivation of zebrafish resulting in a novel lethal multi-cavernous lesion in the embryonic caudal venous plexus (CVP) caused by obstruction of blood flow by intraluminal pillars. These pillars mimic those that mediate intussusceptive angiogenesis; however, in contrast to the normal process, the pillars failed to fuse to split the pre-existing vessel in two.
View Article and Find Full Text PDFInteraction of talin with the cytoplasmic tails of integrin β triggers integrin activation, leading to an increase of integrin affinity/avidity for extracellular ligands. In talin KO mice, loss of talin interaction with platelet integrin αIIbβ3 causes a severe hemostatic defect, and loss of talin interaction with endothelial cell integrin αVβ3 affects angiogenesis. In normal cells, talin is autoinhibited and localized in the cytoplasm.
View Article and Find Full Text PDFDe novo blood vessel formation occurs through coalescence of endothelial cells (ECs) into a cord-like structure, followed by lumenization either through cell- or cord-hollowing. Vessels generated in this manner are restricted in diameter to one or two ECs, and these models fail to explain how vasculogenesis can form large-diameter vessels. Here, we describe a model for large vessel formation that does not require a cord-like structure or a hollowing step.
View Article and Find Full Text PDFPropranolol, a pleiotropic β-adrenergic blocker, has been anecdotally reported to reduce cerebral cavernous malformations (CCMs) in humans. However, propranolol has not been rigorously evaluated in animal models, nor has its mechanism of action in CCM been defined. We report that propranolol or its S(-) enantiomer dramatically reduced embryonic venous cavernomas in ccm2 mosaic zebrafish, whereas R-(+)-propranolol, lacking β antagonism, had no effect.
View Article and Find Full Text PDFIntratumoral heterogeneity is a common feature of many myeloid leukemias and a significant reason for treatment failure and relapse. Thus, identifying the cells responsible for residual disease and leukemia re-growth is critical to better understanding how they are regulated. Here, we show that a knock-in reporter mouse for the stem cell gene Musashi 2 (Msi2) allows identification of leukemia stem cells in aggressive myeloid malignancies, and provides a strategy for defining their core dependencies.
View Article and Find Full Text PDFIntegrin activation mediates lymphocyte trafficking and immune functions. Conventional T cell (Tconv cell) integrin activation requires Rap1-interacting adaptor molecule (RIAM). Here, we report that Apbb1ip-/- (RIAM-null) mice are protected from spontaneous colitis due to IL-10 deficiency, a model of inflammatory bowel disease (IBD).
View Article and Find Full Text PDFCD98, which is required for the rapid proliferation of both normal and cancer cells, and MET, the hepatocyte growth factor receptor, are potential targets for therapeutic antitumor Abs. In this study, we report that the antiproliferative activity of a prototype anti-CD98 Ab, UM7F8, is due to Ab-induced membrane-associated ring CH (MARCH) E3 ubiquitin ligase-mediated ubiquitination and downregulation of cell surface CD98. MARCH1-mediated ubiquitination of CD98 is required for UM7F8's capacity to reduce CD98 surface expression and its capacity to inhibit the proliferation of murine T cells.
View Article and Find Full Text PDFIntegrin-mediated neutrophil adhesion starts by arrest from rolling. Activation of integrins involves conformational changes from an inactive, bent conformation to an extended conformation (E+) with high affinity for ligand binding (H+). The cytoplasmic protein kindlin-3 is necessary for leukocyte adhesion; mutations of kindlin-3 cause leukocyte adhesion deficiency type 3.
View Article and Find Full Text PDFRas-related protein 1 (Rap1) is a major convergence point of the platelet-signaling pathways that result in talin-1 binding to the integrin β cytoplasmic domain and consequent integrin activation, platelet aggregation, and effective hemostasis. The nature of the connection between Rap1 and talin-1 in integrin activation is an important remaining gap in our understanding of this process. Previous work identified a low-affinity Rap1-binding site in the talin-1 F0 domain that makes a small contribution to integrin activation in platelets.
View Article and Find Full Text PDFNew work describes a novel mechanism of mechanotransduction, whereby force-induced membrane deformation activates integrins by disrupting the association of the transmembrane domains of α and β integrins.
View Article and Find Full Text PDF