Publications by authors named "Mark Gillrie"

Tumor-associated inflammation drives cancer progression and therapy resistance, often linked to the infiltration of monocyte-derived tumor-associated macrophages (TAMs), which are associated with poor prognosis in various cancers. To advance immunotherapies, testing on immunocompetent pre-clinical models of human tissue is crucial. We have developed an in vitro model of microvascular networks with tumor spheroids or patient tissues to assess monocyte trafficking into tumors and evaluate immunotherapies targeting the human tumor microenvironment.

View Article and Find Full Text PDF

Desmoplasia in breast cancer leads to heterogeneity in physical properties of the tissue, resulting in disparities in drug delivery and treatment efficacy among patients, thus contributing to high disease mortality. Personalized in vitro breast cancer models hold great promise for high-throughput testing of therapeutic strategies to normalize the aberrant microenvironment in a patient-specific manner. Here, tumoroids assembled from breast cancer cell lines (MCF7, SKBR3, and MDA-MB-468) and patient-derived breast tumor cells (TCs) cultured in microphysiological systems including perfusable microvasculature reproduce key aspects of stromal and vascular dysfunction causing impaired drug delivery.

View Article and Find Full Text PDF

Tumor-associated inflammation drives cancer progression and therapy resistance, with the infiltration of monocyte-derived tumor-associated macrophages (TAMs) associated with poor prognosis in diverse cancers. Targeting TAMs holds potential against solid tumors, but effective immunotherapies require testing on immunocompetent human models prior to clinical trials. Here, we develop an in vitro model of microvascular networks that incorporates tumor spheroids or patient tissues.

View Article and Find Full Text PDF

The knowledge of the blood microvasculature and its functional role in health and disease has grown significantly attributable to decades of research and numerous advances in cell biology and tissue engineering; however, the lymphatics (the secondary vascular system) has not garnered similar attention, in part due to a lack of relevant in vitro models that mimic its pathophysiological functions. Here, a microfluidic-based approach is adopted to achieve precise control over the biological transport of growth factors and interstitial flow that drive the in vivo growth of lymphatic capillaries (lymphangiogenesis). The engineered on-chip lymphatics with in vivo-like morphology exhibit tissue-scale functionality with drainage rates of interstitial proteins and molecules comparable to in vivo standards.

View Article and Find Full Text PDF

During bloodstream infections, neutrophils home to the liver as part of an intravascular immune response to eradicate blood-borne pathogens, but the mechanisms regulating this crucial response are unknown. Using in vivo imaging of neutrophil trafficking in germ-free and gnotobiotic mice, we demonstrate that the intestinal microbiota guides neutrophil homing to the liver in response to infection mediated by the microbial metabolite D-lactate. Commensal-derived D-lactate augments neutrophil adhesion in the liver independent of granulopoiesis in bone marrow or neutrophil maturation and activation in blood.

View Article and Find Full Text PDF

Background: Angioinvasive infection with dissemination to the liver and spleen is exceedingly uncommon, representing less than 1% of reported cases of mucormycosis.

Methods: Diagnosis of mucormycosis is often difficult using conventional methods that rely on broad-based non-septate hyphae present on histologic examination and morphological identification of the cultured organism. Our laboratory also uses an in-house panfungal molecular assay to rapidly diagnose invasive fungal infection when conventional methods do not provide definitive results.

View Article and Find Full Text PDF

Despite surviving a SARS-CoV-2 infection, some individuals experience an intense post-infectious Multisystem Inflammatory Syndrome (MIS) of uncertain etiology. Children with this syndrome (MIS-C) can experience a Kawasaki-like disease, but mechanisms in adults (MIS-A) are not clearly defined. Here we utilize a deep phenotyping approach to examine immunologic responses in an individual with MIS-A.

View Article and Find Full Text PDF

Epithelial ovarian cancer has the highest mortality rate of any gynecologic malignancy and most frequently metastasizes to the peritoneal cavity. Intraperitoneal metastases are highly associated with ascites, the pathologic accumulation of peritoneal fluid due to impaired drainage, increased peritoneal permeability, and tumor and stromal cytokine secretion. However, the relationship between ascites, vascular and mesothelial permeability, and ovarian cancer intraperitoneal metastases remains poorly understood.

View Article and Find Full Text PDF

Background: Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA is completed through reverse transcriptase-PCR (RT-PCR) from either oropharyngeal or nasopharyngeal swabs, critically important for diagnostics but also from an infection control lens. Recent studies have suggested that COVID-19 patients can demonstrate prolonged viral shedding with immunosuppression as a key risk factor.

Case Presentation: We present a case of an immunocompromised patient with SARS-CoV-2 infection demonstrating prolonged infectious viral shedding for 189 days with virus cultivability and clinical relapse with an identical strain based on whole genome sequencing, requiring a multi-modal therapeutic approach.

View Article and Find Full Text PDF

Although critical for host defense, innate immune cells are also pathologic drivers of acute respiratory distress syndrome (ARDS). Innate immune dynamics during Coronavirus Disease 2019 (COVID-19) ARDS, compared to ARDS from other respiratory pathogens, is unclear. Moreover, mechanisms underlying the beneficial effects of dexamethasone during severe COVID-19 remain elusive.

View Article and Find Full Text PDF

Context.—: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious agent, with the propensity to cause severe illness. While vaccine uptake has been increasing in recent months, many regions remain at risk of significant coronavirus disease 19 (COVID-19)-related health care burden.

View Article and Find Full Text PDF

Drug discovery and efficacy in cancer treatments are limited by the inability of pre-clinical models to predict successful outcomes in humans. Limitations remain partly due to their lack of a physiologic tumor microenvironment (TME), which plays a considerable role in drug delivery and tumor response to therapy. Chemotherapeutics and immunotherapies rely on transport through the vasculature, via the smallest capillaries and stroma to the tumor, where passive and active transport processes are at play.

View Article and Find Full Text PDF

Monocytes (Mos) are immune cells that critically regulate cancer, enabling tumor growth and modulating metastasis. Mos can give rise to tumor-associated macrophages (TAMs) and Mo-derived dendritic cells (moDCs), all of which shape the tumor microenvironment (TME). Thus, understanding their roles in the TME is key for improved immunotherapy.

View Article and Find Full Text PDF

Placental vasculopathies are associated with a number of pregnancy-related diseases, including pre-eclampsia (PE)-a leading cause of maternal-fetal morbidity and mortality worldwide. Placental presentations of PE are associated with endothelial dysfunction, reduced vessel perfusion, white blood cell infiltration, and altered production of angiogenic factors within the placenta (a candidate mechanism). Despite maintaining vascular quiescence in other tissues, how pericytes contribute to vascular growth and signaling in the placenta remains unknown.

View Article and Find Full Text PDF

Recent therapeutic success of large-molecule biologics has led to intense interest in assays to measure with precision their transport across the vascular endothelium and into the target tissue. Most current in vitro endothelial models show unrealistically large permeability coefficients due to a non-physiological paracellular transport. Thus, more advanced systems are required to better recapitulate and discern the important contribution of transcellular transport (transcytosis), particularly of pharmaceutically-relevant proteins.

View Article and Find Full Text PDF

Background: Eggerthella lenta is a anaerobic gram-positive bacilli associated with polymicrobial intraabdominal infections. Recently, E. lenta was recognized as an important cause of anaerobic bloodstream infections (BSIs) associated with high mortality.

View Article and Find Full Text PDF

Candida albicans bloodstream infection causes fungal septicaemia and death in over half of afflicted patients. Polymorphonuclear leukocytes (PMN) mediate defense against invasive candidiasis, but their role in protection versus tissue injury and sepsis is unclear. We observe PMN intravascular swarming and subsequent clustering in response to C.

View Article and Find Full Text PDF

Plasmodial species are protozoan parasites that infect erythrocytes. As such, they are in close contact with microvascular endothelium for most of the life cycle in the mammalian host. The host-parasite interactions of this stage of the infection are responsible for the clinical manifestations of the disease that range from a mild febrile illness to severe and frequently fatal syndromes such as cerebral malaria and multi-organ failure.

View Article and Find Full Text PDF

Unlabelled: Plasmodium falciparum malaria remains one of the most deadly infections worldwide. The pathogenesis of the infection results from the sequestration of infected erythrocytes (IRBC) in vital organs, including the brain, with resulting impairment of blood flow, hypoxia, and lactic acidosis. Sequestration occurs through the adhesion of IRBC to host receptors on microvascular endothelium by Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a large family of variant surface antigens, each with up to seven extracellular domains that can bind to multiple host receptors.

View Article and Find Full Text PDF

Plasmodium falciparum-infected erythrocytes (IRBC) expressing the domain cassettes (DC) 8 and 13 of the cytoadherent ligand P. falciparum erythrocyte membrane protein 1 adhere to the endothelial protein C receptor (EPCR). By interfering with EPCR anti-coagulant and pro-endothelial barrier functions, IRBC adhesion could promote coagulation and vascular permeability that contribute to the pathogenesis of cerebral malaria.

View Article and Find Full Text PDF

The adhesion of Plasmodium falciparum-infected erythrocytes (IRBC) to receptors on different host cells plays a divergent yet critical role in determining the progression and outcome of the infection. Based on our ex vivo studies with clinical parasite isolates from adult Thai patients, we have previously proposed a paradigm for IRBC cytoadherence under physiological shear stress that consists of a recruitment cascade mediated largely by P-selectin, ICAM-1 and CD36 on primary human dermal microvascular endothelium (HDMEC). In addition, we detected post-adhesion signaling events involving Src family kinases and the adaptor protein p130CAS in endothelial cells that lead to CD36 clustering and cytoskeletal rearrangement which enhance the magnitude of the adhesive strength, allowing adherent IRBC to withstand shear stress of up to 20 dynes/cm².

View Article and Find Full Text PDF

Plasmodium falciparum is a protozoan parasite of human erythrocytes that causes the most severe form of malaria. Severe P. falciparum infection is associated with endothelial activation and permeability, which are important determinants of the outcome of the infection.

View Article and Find Full Text PDF

Increased permeability of the microvascular endothelium to fluids and proteins is the hallmark of inflammatory conditions such as sepsis. Leakage can occur between (paracellular) or through (transcytosis) endothelial cells, yet little is known about whether these pathways are linked. Understanding the regulation of microvascular permeability is essential for the identification of novel therapies to combat inflammation.

View Article and Find Full Text PDF

The adhesion of infected red blood cells (IRBCs) to microvascular endothelium is critical in the pathogenesis of severe malaria. Here we used atomic force and confocal microscopy to examine the adhesive forces between IRBCs and human dermal microvascular endothelial cells. Initial contact of the cells generated a mean ± sd adhesion force of 167 ± 208 pN from the formation of single or multiple bonds with CD36.

View Article and Find Full Text PDF

The response of leukocytes to lipoteichoic acid (LTA), a TLR2-dependent major cell wall component of Staphylococcus aureus, is linked to the outcome of an infection. In this study we investigated the role of nonhematopoietic TLR2 in response to LTA and S. aureus by creating bone marrow chimeras.

View Article and Find Full Text PDF