The physicochemical properties of char and activated carbon produced from the co-pyrolysis of corn stover (CS) and plastics, polystyrene (PS) and polyethylene terephthalate (PET), were studied. Non-isothermal gas analysis of the volatiles was conducted using an online mass spectrometer to correlate the thermal degradation of gaseous byproducts to the formation of pores in the char materials. The findings determined that the addition of PS or PET promotes the formation of the solid char product with either higher than average pore sizes or surface areas compared to control samples.
View Article and Find Full Text PDFThis study evaluates the influence of hydrothermal carbonization (HTC) or slow pyrolysis (SP) process conditions on the physicochemical properties of precursor biochars and activated carbon (AC). The AC is achieved through a direct or a two-step method with subsequent chemical activation using KOH. A theory is developed on the biochar propensity to be chemically activated based on the lignocellulosic structure composition.
View Article and Find Full Text PDFLignin valorization has risen as a promising pathway to supplant the use of petrochemicals for chemical commodities and fuels. However, the challenges of separating and breaking down lignin from lignocellulosic biomass are the primary barriers to success. Integrated biorefinery systems that incorporate both homo- and heterogeneous catalysis for the upgrading of lignin intermediates have emerged as a viable solution.
View Article and Find Full Text PDFAim: Simulation training has been shown to be an effective way to teach crisis resource management (CRM) skills. Deliberate practice theory states that learners need to actively practice so that learning is effective. However, many residency programs have limited opportunities for learners to be "active" participants in simulation exercises.
View Article and Find Full Text PDF