Understanding how canopy-scale photosynthesis responds to temperature is of paramount importance for realistic prediction of the likely impact of climate change on forest growth. The effects of temperature on leaf-scale photosynthesis have been extensively documented but data demonstrating the temperature response of canopy-scale photosynthesis are relatively rare, and the mechanisms that determine the response are not well quantified. Here, we compared leaf- and canopy-scale photosynthesis responses to temperature measured in a whole-tree chamber experiment and tested mechanisms that could explain the difference between leaf and crown scale temperature optima for photosynthesis.
View Article and Find Full Text PDFUnravelling the complexities of transpiration can be assisted by understanding the oxygen isotope composition of transpired water vapour (δE). It is often assumed that δE is at steady state, thereby mirroring the oxygen isotope composition of source water (δsource), but this assumption has never been tested at the whole-tree scale. This study utilized the unique infrastructure of 12 whole-tree chambers enclosing Eucalyptus parramattensis E.
View Article and Find Full Text PDFContemporary climate change will push many tree species into conditions that are outside their current climate envelopes. Using the Eucalyptus genus as a model, we addressed whether species with narrower geographical distributions show constrained ability to cope with warming relative to species with wider distributions, and whether this ability differs among species from tropical and temperate climates. We grew seedlings of widely and narrowly distributed Eucalyptus species from temperate and tropical Australia in a glasshouse under two temperature regimes: the summer temperature at seed origin and +3.
View Article and Find Full Text PDFIn urban areas, diverse and complex habitats for biodiversity are often lacking. This lack of diversity not only compromises essential ecological processes, such as pollination and nutrient cycling, but also diminishes the resilience of urban ecosystems to pests and diseases. To enhance urban biodiversity, a possible solution is to integrate shrubs alongside trees, thereby increasing the overall amount of vegetation, structural complexity and the associated resource diversity.
View Article and Find Full Text PDFHigh air temperatures increase atmospheric vapor pressure deficit (VPD) and the severity of drought, threatening forests worldwide. Plants regulate stomata to maximize carbon gain and minimize water loss, resulting in a close coupling between net photosynthesis (A ) and stomatal conductance (g ). However, evidence for decoupling of g from A under extreme heat has been found.
View Article and Find Full Text PDFAridity shapes species distributions and plant growth and function worldwide. Yet, plant traits often show complex relationships with aridity, challenging our understanding of aridity as a driver of evolutionary adaptation. We grew nine genotypes of subsp.
View Article and Find Full Text PDFPopulations from different climates often show unique growth responses to temperature, reflecting temperature adaptation. Yet, whether populations from different climates differ in physiological temperature acclimation remains unclear. Here, we test whether populations from differing thermal environments exhibit different growth responses to temperature and differences in temperature acclimation of leaf respiration.
View Article and Find Full Text PDFSustaining grassland production in a changing climate requires an understanding of plant adaptation strategies, including trait plasticity under warmer and drier conditions. However, our knowledge to date disproportionately relies on aboveground responses, despite the importance of belowground traits in maintaining aboveground growth, especially in grazed systems. We subjected a perennial pasture grass, Festuca arundinacea, to year-round warming (+3 °C) and cool-season drought (60% rainfall reduction) in a factorial field experiment to test the hypotheses that: (i) drought and warming increase carbon allocation belowground and shift root traits towards greater resource acquisition and (ii) increased belowground carbon reserves support post-drought aboveground recovery.
View Article and Find Full Text PDFMost biological rates depend on the rate of respiration. Temperature variation is typically considered the main driver of daily plant respiration rates, assuming a constant daily respiration rate at a set temperature. Here, we show empirical data from 31 species from temperate and tropical biomes to demonstrate that the rate of plant respiration at a constant temperature decreases monotonically with time through the night, on average by 25% after 8 h of darkness.
View Article and Find Full Text PDFCities have been described as 'heat islands' and 'dry islands' due to hotter, drier air in urban areas, relative to the surrounding landscape. As climate change intensifies, the health of urban trees will be increasingly impacted. Here, we posed the question: Is it possible to predict urban tree species mortality using (1) species climate envelopes and (2) plant functional traits? To answer these, we tracked patterns of crown dieback and recovery for 23 common urban tree and shrub species in Sydney, Australia during the record-breaking austral 2019-2020 summer.
View Article and Find Full Text PDFLeaf daytime respiration (leaf respiration in the light, R ) is often assumed to constitute a fixed fraction of leaf dark respiration (R ) (i.e. a fixed light inhibition of respiration (R )) and vary diurnally due to temperature fluctuations.
View Article and Find Full Text PDFCarbon allocation determines plant growth, fitness and reproductive success. However, climate warming and drought impacts on carbon allocation patterns in grasses are not well known, particularly following grazing or clipping. A widespread C pasture grass, Festuca arundinacea, was grown at 26 and 30°C in controlled environment chambers and subjected to drought (65% reduction relative to well-watered controls).
View Article and Find Full Text PDFShifts in the timing, intensity and/or frequency of climate extremes, such as severe drought and heatwaves, can generate sustained shifts in ecosystem function with important ecological and economic impacts for rangelands and managed pastures. The Pastures and Climate Extremes experiment (PACE) in Southeast Australia was designed to investigate the impacts of a severe winter/spring drought (60% rainfall reduction) and, for a subset of species, a factorial combination of drought and elevated temperature (ambient +3°C) on pasture productivity. The experiment included nine common pasture and Australian rangeland species from three plant functional groups (C grasses, C grasses and legumes) planted in monoculture.
View Article and Find Full Text PDFWhile trees can acclimate to warming, there is concern that tropical rainforest species may be less able to acclimate because they have adapted to a relatively stable thermal environment. Here we tested whether the physiological adjustments to warming differed among Australian tropical, subtropical and warm-temperate rainforest trees. Photosynthesis and respiration temperature responses were quantified in six Australian rainforest seedlings of tropical, subtropical and warm-temperate climates grown across four growth temperatures in a glasshouse.
View Article and Find Full Text PDFTree mortality during global-change-type drought is usually attributed to xylem dysfunction, but as climate change increases the frequency of extreme heat events, it is necessary to better understand the interactive role of heat stress. We hypothesized that some drought-stressed plants paradoxically open stomata in heatwaves to prevent leaves from critically overheating. We experimentally imposed heat (>40°C) and drought stress onto 20 broadleaf evergreen tree/shrub species in a glasshouse study.
View Article and Find Full Text PDFRising atmospheric [CO ] (C ) generally enhances tree growth if nutrients are not limiting. However, reduced water availability and elevated evaporative demand may offset such fertilization. Trees with access to deep soil water may be able to mitigate such stresses and respond more positively to C .
View Article and Find Full Text PDFPhotosynthetic water-use efficiency (WUE) describes the link between terrestrial carbon (C) and water cycles. Estimates of intrinsic WUE (iWUE) from gas exchange and C isotopic composition (δ C) differ due to an internal conductance in the leaf mesophyll (g ) that is variable and seldom computed. We present the first direct estimates of whole-tree g , together with iWUE from whole-tree gas exchange and δ C of the phloem (δ C ).
View Article and Find Full Text PDFGlobally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil-to-atmosphere CO flux, commonly though imprecisely termed soil respiration (R ), is one of the largest carbon fluxes in the Earth system. An increasing number of high-frequency R measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well.
View Article and Find Full Text PDFShort-term temperature response curves of leaf dark respiration (R-T) provide insights into a critical process that influences plant net carbon exchange. This includes how respiratory traits acclimate to sustained changes in the environment. Our study analysed 860 high-resolution R-T (10-70°C range) curves for: (a) 62 evergreen species measured in two contrasting seasons across several field sites/biomes; and (b) 21 species (subset of those sampled in the field) grown in glasshouses at 20°C : 15°C, 25°C : 20°C and 30°C : 25°C, day : night.
View Article and Find Full Text PDFThermoregulation of leaf temperature (T ) may foster metabolic homeostasis in plants, but the degree to which T is moderated, and under what environmental contexts, is a topic of debate. Isotopic studies inferred the temperature of photosynthetic carbon assimilation to be a constant value of c. 20°C; by contrast, leaf biophysical theory suggests a strong dependence of T on environmental drivers.
View Article and Find Full Text PDFPlant respiration can acclimate to changing environmental conditions and vary between species as well as biome types, although belowground respiration responses to ongoing climate warming are not well understood. Understanding the thermal acclimation capacity of root respiration (Rroot) in relation to increasing temperatures is therefore critical in elucidating a key uncertainty in plant function in response to warming. However, the degree of temperature acclimation of Rroot in rainforest trees and how root chemical and morphological traits are related to acclimation is unknown.
View Article and Find Full Text PDFAtmospheric carbon dioxide enrichment (eCO) can enhance plant carbon uptake and growth, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO concentration. Although evidence gathered from young aggrading forests has generally indicated a strong CO fertilization effect on biomass growth, it is unclear whether mature forests respond to eCO in a similar way. In mature trees and forest stands, photosynthetic uptake has been found to increase under eCO without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO unclear.
View Article and Find Full Text PDF