Publications by authors named "Mark G St John"

Forests are major carbon (C) sinks, but their ability to sequester C and thus mitigate climate change, varies with the environment, disturbance regime, and biotic interactions. Herbivory by invasive, nonnative ungulates can have profound ecosystem effects, yet its consequences for forest C stocks remain poorly understood. We determined the impact of invasive ungulates on C pools, both above- and belowground (to 30 cm), and on forest structure and diversity using 26 paired long-term (>20 years) ungulate exclosures and adjacent unfenced control plots located in native temperate rainforests across New Zealand, spanning 36-41° S.

View Article and Find Full Text PDF

Woody plant expansion into grasslands is widespread, driven by both successions to dominance by native woody species or invasion by non-native woody species. These shifts from grass- to woody-dominated systems also have profound effects on both above- and belowground communities and ecosystem processes. Woody-plant expansion should also alter the functional composition of the soil biota, including that of nematodes, which are major drivers of soil food-web structure and belowground processes, but such belowground impacts are poorly understood.

View Article and Find Full Text PDF

Vertebrate consumers can be important drivers of the structure and functioning of ecosystems, including the soil and litter invertebrate communities that drive many ecosystem processes. Burrowing seabirds, as prevalent vertebrate consumers, have the potential to impact consumptive effects via adding marine nutrients to soil (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • Plant invasions, particularly by non-native species like Pinus contorta, can significantly alter soil biota and nutrient levels, impacting future plant communities.
  • Removal of such invasives can have lasting effects, with changes in soil conditions continuing to influence ecosystem dynamics even after the invasive is gone.
  • Specifically, Pinus contorta enhanced ectomycorrhizal connections and soil nutrient cycling, which favored the growth of certain non-native plants after its removal, revealing the complex interactions in belowground ecosystems that need more attention in studies of plant community recovery.
View Article and Find Full Text PDF

Understanding the factors that drive soil carbon (C) accumulation is of fundamental importance given their potential to mitigate climate change. Much research has focused on the relationship between plant traits and C sequestration, but no studies to date have quantitatively considered traits of their mycorrhizal symbionts. Here, we use a modelling approach to assess the contribution of an important mycorrhizal fungal trait, organic nutrient uptake, to soil C accumulation.

View Article and Find Full Text PDF

Associations between plants and animals in aboveground communities are often predictable and specific. This has been exploited for the purposes of estimating the diversity of animal species based on the diversity of plant species. The introduction of invasive alien plants into an ecosystem can result in dramatic changes in both the native plant and animal assemblages.

View Article and Find Full Text PDF

Few studies have considered whether plant taxa can be used as predictors of belowground faunal diversity in natural ecosystems. We examined soil mite (Acari) diversity beneath six grass species at the Konza Prairie Biological Station, Kansas, USA. We tested the hypotheses that soil mite species richness, abundance, and taxonomic diversity are greater (1) beneath grasses in dicultures (different species) compared to monocultures (same species), (2) beneath grasses of higher resource quality (lower C:N) compared to lower resource quality, and (3) beneath heterogeneous mixes of grasses (C3 and C4 grasses growing together) compared to homogeneous mixes (C3 or C4 grasses) using natural occurrences of plant species as treatments.

View Article and Find Full Text PDF