Publications by authors named "Mark G Herrmann"

The 96-well microplate is a ubiquitous tool in the laboratory; its use is so extensive that in a limited number of situations it can be restrictive. Consider the situation where 96 samples need analysis or a downstream process in which the 96-well format leaves no space for additional standards or controls in the upstream 96-well processing. Consequently, plates are split or sample number reduced thereby incurring additional cost for plates, reagents, standards, controls, sample tracking, data files, and time to analyze the entire plate.

View Article and Find Full Text PDF

This paper describes the development and preliminary testing of a competitive surface-enhanced Raman scattering (SERS) immunoassay for calcitriol, the 1,25-dihydroxy metabolite (1,25-(OH)(2)-D(3)) of vitamin D(3). Deficiencies in 1,25-(OH)(2)-D have been linked to renal disease, while elevations are linked to hypercalcemia. Thus, there has been a sharp increase in the clinical demand for measurements of this metabolite.

View Article and Find Full Text PDF

Background: Additional instruments have become available since instruments for DNA melting analysis of PCR products for genotyping and mutation scanning were compared. We assessed the performance of these new instruments for genotyping and scanning for mutations.

Methods: A 110-bp fragment of the beta-globin gene including the sickle cell anemia locus (HBB c.

View Article and Find Full Text PDF

Background: DNA melting analysis for genotyping and mutation scanning of PCR products by use of high-resolution instruments with special "saturation" dyes has recently been reported. The comparative performance of other instruments and dyes has not been evaluated.

Methods: A 110-bp fragment of the beta-globin gene including the sickle cell anemia locus (A17T) was amplified by PCR in the presence of either the saturating DNA dye, LCGreen Plus, or SYBR Green I.

View Article and Find Full Text PDF

A membrane-filter-based, fluorescent Gram stain method for bacterial detection in cerebrospinal fluid samples was developed and evaluated as a rapid, sensitive alternative to standard Gram stain protocols. A recently developed, modified version of the aluminium oxide membrane Anopore with low-fluorescence optical properties showed superior performance in this application. Other aspects of the fluorescent Gram stain system that were evaluated include membrane filter selection, strategies to reduce fluorescence fading and the effect of patient blood cells on bacterial detection in the fluorescently stained cerebrospinal fluid samples.

View Article and Find Full Text PDF