As part of our ongoing efforts to identify novel ligands for the metabotropic glutamate 2 and 3 (mGlu) receptors, we have incorporated substitution at the C3 and C4 positions of the (1S,2R,5R,6R)-2-amino-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid scaffold to generate mGlu antagonists.
View Article and Find Full Text PDFMuscarinic M1-M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer's disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. Here we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium.
View Article and Find Full Text PDFProtein function prediction is an active area of research in computational biology. Function prediction can help biologists make hypotheses for characterization of genes and help interpret biological assays, and thus is a productive area for collaboration between experimental and computational biologists. Among various function prediction methods, predicting binding ligand molecules for a target protein is an important class because ligand binding events for a protein are usually closely intertwined with the proteins' biological function, and also because predicted binding ligands can often be directly tested by biochemical assays.
View Article and Find Full Text PDFThe observation that cholinergic deafferentation of circuits projecting from forebrain basal nuclei to frontal and hippocampal circuits occurs in Alzheimer's disease has led to drug-targeting of muscarinic M1 receptors to alleviate cognitive symptoms. The high homology within the acetylcholine binding domain of this family however has made receptor-selective ligand development challenging. This work presents the synthesis scheme, pharmacokinetic and structure-activity-relationship study findings for M1-selective ligand, LY593093.
View Article and Find Full Text PDFVirtual screening has been widely used in the drug discovery process. Ligand-based virtual screening (LBVS) methods compare a library of compounds with a known active ligand. Two notable advantages of LBVS methods are that they do not require structural information of a target receptor and that they are faster than structure-based methods.
View Article and Find Full Text PDFStructure-based computational methods have been widely used in exploring protein-ligand interactions, including predicting the binding ligands of a given protein based on their structural complementarity. Compared to other protein and ligand representations, the advantages of a surface representation include reduced sensitivity to subtle changes in the pocket and ligand conformation and fast search speed. Here we developed a novel method named PL-PatchSurfer (Protein-Ligand PatchSurfer).
View Article and Find Full Text PDFAs part of our ongoing interest in identifying novel agonists acting at metabotropic glutamate (mGlu) 2/3 receptors, we have explored the effect of structural modifications of 1S,2S,5R,6S-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate (LY354740), a potent and pharmacologically balanced mGlu2/3 receptor agonist.
View Article and Find Full Text PDFThe antiapoptotic proteins Bcl-x(L) and Bcl-2 play key roles in the maintenance of normal cellular homeostasis. However, their overexpression can lead to oncogenic transformation and is responsible for drug resistance in certain types of cancer. This makes Bcl-x(L) and Bcl-2 attractive targets for the development of potential anticancer agents.
View Article and Find Full Text PDF