The basal cell maintains the airway's respiratory epithelium as the putative resident stem cell. Basal cells are known to self-renew and differentiate into airway ciliated and secretory cells. However, it is not clear if every basal cell functions as a stem cell.
View Article and Find Full Text PDFThere is a significant unmet need for clinical reflex tests that increase the specificity of prostate-specific antigen blood testing, the longstanding but imperfect tool for prostate cancer diagnosis. Towards this endpoint, we present the results from a discovery study that identifies new prostate-specific antigen reflex markers in a large-scale patient serum cohort using differentiating technologies for deep proteomic interrogation. We detect known prostate cancer blood markers as well as novel candidates.
View Article and Find Full Text PDFGlycoproteins in urine have the potential to provide a rich class of informative molecules for studying human health and disease. Despite this promise, the urine glycoproteome has been largely uncharacterized. Here, we present the analysis of glycoproteins in human urine using LC-MS/MS-based intact glycopeptide analysis, providing both the identification of protein glycosites and characterization of the glycan composition at specific glycosites.
View Article and Find Full Text PDFUnlabelled: Activating estrogen receptor alpha (ER; also known as ESR1) mutations are present in primary endometrial and metastatic breast cancers, promoting estrogen-independent activation of the receptor. Functional characterizations in breast cancer have established unique molecular and phenotypic consequences of the receptor, yet the impact of ER mutations in endometrial cancer has not been fully explored. In this study, we used CRISPR-Cas9 to model the clinically prevalent ER-Y537S mutation and compared results with ER-D538G to discover allele-specific differences between ER mutations in endometrial cancer.
View Article and Find Full Text PDFSignificanceDeep profiling of the plasma proteome at scale has been a challenge for traditional approaches. We achieve superior performance across the dimensions of precision, depth, and throughput using a panel of surface-functionalized superparamagnetic nanoparticles in comparison to conventional workflows for deep proteomics interrogation. Our automated workflow leverages competitive nanoparticle-protein binding equilibria that quantitatively compress the large dynamic range of proteomes to an accessible scale.
View Article and Find Full Text PDFProstate cancer (PCa) patients undergoing androgen deprivation therapy almost invariably develop castration-resistant prostate cancer (CRPC). Targeting the androgen receptor (AR) Binding Function-3 (BF3) site offers a promising option to treat CRPC. However, BF3 inhibitors have been limited by poor potency or inadequate metabolic stability.
View Article and Find Full Text PDFProstate cancer patients undergoing androgen deprivation therapy almost invariably develop castration-resistant prostate cancer. Resistance can occur when mutations in the androgen receptor (AR) render anti-androgen drugs ineffective or through the expression of constitutively active splice variants lacking the androgen binding domain entirely (e.g.
View Article and Find Full Text PDFThe TMPRSS2-ERG fusion is the most common genomic rearrangement in human prostate cancer. However, in established adenocarcinoma, it is unknown how the ERG oncogene promotes a cancerous phenotype and maintains downstream androgen receptor (AR) signaling pathways. In this study, we utilized a murine prostate organoid system to explore the effects of ERG on tumorigenesis and determined the mechanism underlying prostate cancer dependence on ERG.
View Article and Find Full Text PDFProteins play a key role in all aspects of cellular homeostasis. Proteomics, the large-scale study of proteins, provides in-depth data on protein properties, including abundances and post-translational modification states, and as such provides a rich avenue for the investigation of biological and disease processes. While proteomic tools such as mass spectrometry have enabled exquisitely sensitive sample analysis, sample preparation remains a critical unstandardized variable that can have a significant impact on downstream data readouts.
View Article and Find Full Text PDFConventional antibody-drug conjugates (ADCs) are heterogeneous mixtures of chemically distinct molecules that vary in both drugs/antibody (DAR) and conjugation sites. Suboptimal properties of heterogeneous ADCs have led to new site-specific conjugation methods for improving ADC homogeneity. Most site-specific methods require extensive antibody engineering to identify optimal conjugation sites and introduce unique functional groups for conjugation with appropriately modified linkers.
View Article and Find Full Text PDFSoft tissue sarcoma (STS) is a heterogenous tumor arising from the embryonic mesoderm represented by approximately 50 histological subtypes. Effective therapeutic intervention is lacking for recurrent, late stage and metastatic disease. CD39, a cell-surface ectonucleotidase, has previously been shown to be upregulated in hematological malignancies and various epithelial tumors, but not in STS.
View Article and Find Full Text PDFThe Schizosaccharomyces pombe telomere-associated protein Ccq1p has previously been shown to participate in telomerase recruitment, heterochromatin formation, and suppression of checkpoint activation. Here we characterize a critical role for Ccq1p in mitotic transit. We show that mitotic cells lacking Ccq1p lose minichromosomes at high frequencies but that conditional knockdown of Ccq1p expression results in telomere bridging within one cell cycle.
View Article and Find Full Text PDFMass spectrometry-based proteomics holds great promise as a discovery tool for biomarker candidates in the early detection of diseases. Recently much emphasis has been placed upon producing highly reliable data for quantitative profiling for which highly reproducible methodologies are indispensable. The main problems that affect experimental reproducibility stem from variations introduced by sample collection, preparation, and storage protocols and LC-MS settings and conditions.
View Article and Find Full Text PDFRecent studies have suggested that nitric oxide (NO) binding to hemoglobin (Hb) may lead to the inhibition of sickle cell fiber formation and the dissolution of sickle cell fibers. NO can react with Hb in at least 3 ways: 1) formation of Hb(II)NO, 2) formation of methemoglobin, and 3) formation of S-nitrosohemoglobin, through nitrosylation of the beta93 Cys residue. In this study, the role of beta93 Cys in the mechanism of sickle cell fiber inhibition is investigated through chemical modification with N-ethylmaleimide.
View Article and Find Full Text PDFMass spectrometry-based quantitative proteomics has become an important component of biological and clinical research. Although such analyses typically assume that a protein's peptide fragments are observed with equal likelihood, only a few so-called 'proteotypic' peptides are repeatedly and consistently identified for any given protein present in a mixture. Using >600,000 peptide identifications generated by four proteomic platforms, we empirically identified >16,000 proteotypic peptides for 4,030 distinct yeast proteins.
View Article and Find Full Text PDFUsing a chemical genetics screen, we have identified ent-15-oxokaurenoic acid (EKA) as a chemical that causes prolonged mitotic arrest at a stage resembling prometaphase. EKA inhibits the association of the mitotic motor protein centromeric protein E with kinetochores and inhibits chromosome movement. Unlike most antimitotic agents, EKA does not inhibit the polymerization or depolymerization of tubulin.
View Article and Find Full Text PDFQuantitative profiling of proteins, the direct effectors of nearly all biological functions, will undoubtedly complement technologies for the measurement of mRNA. Systematic proteomic measurement of the cell cycle is now possible by using stable isotopic labeling with isotope-coded affinity tag reagents and software tools for high-throughput analysis of LC-MS/MS data. We provide here the first such study achieving quantitative, global proteomic measurement of a time-course gene expression experiment in a model eukaryote, the budding yeast Saccharomyces cerevisiae, during the cell cycle.
View Article and Find Full Text PDFWe present the Saccharomyces cerevisiae PeptideAtlas composed from 47 diverse experiments and 4.9 million tandem mass spectra. The observed peptides align to 61% of Saccharomyces Genome Database (SGD) open reading frames (ORFs), 49% of the uncharacterized SGD ORFs, 54% of S.
View Article and Find Full Text PDFMass spectrometry-based proteomic experiments, in combination with liquid chromatography-based separation, can be used to compare complex biological samples across multiple conditions. These comparisons are usually performed on the level of protein lists generated from individual experiments. Unfortunately given the current technologies, these lists typically cover only a small fraction of the total protein content, making global comparisons extremely limited.
View Article and Find Full Text PDFAbnormal centrosomal structures similar to those occurring in human cancers are induced in fission yeast by overexpression of the pericentrin homolog Pcp1p. Analysis of abnormal Pcp1p-containing structures with quantitative mass spectrometry and isotope-coded affinity tags identified a coiled-coil, structural maintenance of chromosomes (SMC) domain protein. This protein, termed Ccq1p (coiled-coil protein quantitatively enriched), localizes with Taz1p to telomeres in normal vegetative cells.
View Article and Find Full Text PDFThe transcriptome provides the database from which a cell assembles its collection of proteins. Translation of individual mRNA species into their encoded proteins is regulated, producing discrepancies between mRNA and protein levels. Using a new modeling approach to data analysis, a striking diversity is revealed in association of the transcriptome with the translational machinery.
View Article and Find Full Text PDFProg Cell Cycle Res
December 2003
Drugs affecting the cell cycle provide insights into mechanisms underlying cancer and suggest strategies for ablating uncontrolled growth. Essential to an understanding of the activity of such compounds is the identification of the set of proteins affected, either directly or indirectly, by the drug. The combination of novel technologies for stable isotope protein tagging, chromatographic separation, tandem mass spectrometry, and data processing is an extremely powerful means for providing such identifications and, in addition, for establishing a proteome-wide profile of all proteins whose abundance levels or phosphorylation state are affected by the drug.
View Article and Find Full Text PDFPericentrin, a critical centrosome component first identified in mouse, recruits factors required for assembly of the mitotic spindle apparatus. A similar yet larger human protein named kendrin was recently identified, but its relationship to pericentrin was not clear. Extensive sequence homology between the mouse chromosome 10 region encoding pericentrin and the human chromosome 21 region encoding kendrin indicates that these proteins are encoded by syntenic loci.
View Article and Find Full Text PDFA great deal of current biological and clinical research is directed at the interpretation of the information contained in the human genome sequence in terms of the structure, function and control of biological systems and processes. Proteomics, the systematic analysis of proteins, is becoming a critical component in this endeavor because proteomic measurements are carried out directly on proteins--the catalysts and effectors of essentially all biological functions. To detect changes in protein profiles that might provide important diagnostic or functional insights, proteomic analyses necessarily have to be quantitative.
View Article and Find Full Text PDFIn the budding yeast Saccharomyces cerevisiae, the calmodulin-binding protein Spc110p/Nuf1p facilitates mitotic spindle formation from the fungal centrosome or spindle pole body (SPB). The human Spc110p orthologue kendrin is a centrosomal, calmodulin-binding pericentrin isoform that is specifically overexpressed in carcinoma cells. Here we establish an evolutionary and functional link between Spc110p and kendrin through identification and analysis of similar calmodulin-binding proteins in the fission yeast Schizosaccharomyces pombe (Pcp1p, pole target of calmodulin in S.
View Article and Find Full Text PDF