Publications by authors named "Mark Fleck"

Pet food formulated with raw meat can pose health risks to pets and humans. High-pressure processing (HPP) was evaluated to achieve a 5-log reduction ofSalmonella,E. coliSTEC, andL.

View Article and Find Full Text PDF

Pentameric GABA receptors are composed from 19 possible subunits. The GABA β subunit is unique because the β and β subunits can assemble and traffic to the cell surface as homomers, whereas most of the other subunits, including β, are heteromers. The intracellular domain (ICD) of the GABA subunits has been implicated in targeting and clustering GABA receptors at the plasma membrane.

View Article and Find Full Text PDF

Histamine is an important neurotransmitter that exerts its physiological actions through H1-4 metabotropic receptors in mammals. It also directly activates ionotropic GABAA receptor (GABAAR) β3 homooligomers and potentiates GABA responses in αβ heterooligomers in vitro, but the respective histamine binding sites in GABAARs are unknown. We hypothesized that histamine binds at the extracellular β+β- interface at a position homologous to the GABA binding site of heterooligomeric GABAARs.

View Article and Find Full Text PDF

Dopamine is a critical neuromodulator that activates GPCRs in mammals or ligand-gated ion channels in invertebrates. The present study demonstrates that dopamine (0.1-10 mm) exerts novel, opposing effects on different populations of mammalian (rat) GABAA receptors.

View Article and Find Full Text PDF

There is ample pharmacological and physiological evidence for yet unidentified histamine receptors in mammalian brain that are linked to a Cl(-) conductance. In invertebrates, two histamine-gated chloride channels (HisCl α1 and α2) are already well known. HisCl channels are members of the Cys-loop receptor superfamily of ligand-gated ion channels and are closely related to the mammalian GABA(A) and glycine receptors (GlyR).

View Article and Find Full Text PDF

Differences in binding-site residues of GluR2 (AMPAR) and GluR6 (KAR) subunits have been identified that might account for their functional and pharmacological differences. Specifically, residues A518, A689 and N721 in GluR6 replace highly conserved threonine and serine residues found in other ionotropic glutamate receptor (iGluR) subunits. To define how these natural substitutions impact GluR6 function, we used patch clamp recording with ultrafast perfusion to characterize the effects of A518T, A689S and N721T on agonist potency, efficacy and response kinetics.

View Article and Find Full Text PDF

Allosteric modulators and mutations that slow AMPAR desensitization have additional effects on deactivation and agonist potency. We investigated whether these are independent actions or the natural consequence of slowing desensitization. Effects of cyclothiazide (CTZ), trichlormethiazide (TCM), and CX614 were compared at wild-type GluR1 and "nondesensitizing" GluR1-L497Y mutant receptors by patch-clamp recording with ultrafast perfusion.

View Article and Find Full Text PDF

Glutamate is the principal excitatory neurotransmitter in the mammalian central nervous system. The cellular regulation of glutamate receptor (GluR) ion channel function and expression is important for maintaining or adjusting target cell excitability to meet ever-changing demands, for example, in relation to developmental or use-dependent synaptic plasticity. Dysregulation of GluR function or expression may be a contributing factor in certain forms of epilepsy, stroke/ischemia, head trauma, cognitive impairments, and neurodegenerative disease.

View Article and Find Full Text PDF

The glutamate receptor (GluR) agonist-binding site consists of amino acid residues in the extracellular S1 and S2 domains in the N-terminal and M3-M4 loop regions, respectively. In the present study, we sought to confirm that the conserved ligand-binding residues identified in the AMPA receptor S1S2 domains also participate in ligand binding of GluR6 kainate receptors. Amino acid substitutions were made in the GluR6 parent at R523, T690, and E738 to alter their potential interactions with ligand.

View Article and Find Full Text PDF

Even though conventional systemic doses of cimetidine and other histamine H(2) antagonists display minimal brain penetration, central nervous system (CNS) effects (including seizures and analgesia) have been reported after administration of these drugs in animals and man. To test the hypothesis that cimetidine-like drugs produce these CNS effects via inhibition of GABA(A) receptors, the actions of these drugs were studied on seven different, precisely-defined rat recombinant GABA(A) receptors using whole-cell patch clamp recordings. The H(2) antagonists famotidine and tiotidine produced competitive and reversible inhibition of GABA-evoked currents in HEK293 cells transfected with various GABA(A) receptor subunits (IC(50) values were between 10-50 microM).

View Article and Find Full Text PDF

18-Methoxycoronaridine, a novel iboga alkaloid congener, reduces drug self-administration in animal models of addiction. Previously, we proposed that these effects are mediated by the ability of 18-methoxycoronaridine to inhibit nicotinic alpha3beta4 acetylcholine receptors. In an attempt to identify more potent 18-methoxycoronaridine analogs, we have tested a series of 18-methoxycoronaridine congeners by whole-cell patch clamp recording of HEK 293 cells expressing recombinant nicotinic alpha3beta4 receptors or glutamate NR1/NR2B N-methyl-d-aspartate (NMDA) receptors.

View Article and Find Full Text PDF

The glutamate receptor (GluR) agonist-binding site consists of amino acid residues in the extracellular S1 and S2 segments in the N-terminal and M3-M4 loop regions, respectively. Molecular and atomic level structural analyses have identified specific S1 and S2 residues that interact directly with ligands, interact with one another in a dimeric configuration, and influence channel gating and desensitization properties of AMPA receptors. Other studies suggest that KA receptor gating and desensitization may differ mechanistically.

View Article and Find Full Text PDF

This study set out to profile the activity of (S)-desmethylzopiclone (SEP-174559) at subtypes of the gamma-aminobutyric acid type-A (GABA(A)) receptor and other neurotransmitter receptor ion channels. Recombinant receptors were expressed in human embryonic kidney 293 cells and examined functionally by patch-clamp recording with fast perfusion of agonist and drug solutions. Micromolar concentrations of SEP-174559 potentiated GABA(A) receptor currents evoked by subsaturating concentrations of GABA.

View Article and Find Full Text PDF

The iboga alkaloid ibogaine and the novel iboga alkaloid congener 18-methoxycoronaridine are putative anti-addictive agents. Using patch-clamp methodology, the actions of ibogaine and 18-methoxycoronaridine at various neurotransmitter receptor ion-channel subtypes were determined. Both ibogaine and 18-methoxycoronaridine were antagonists at alpha 3 beta 4 nicotinic receptors and both agents were more potent at this site than at alpha 4 beta 2 nicotinic receptors or at NMDA or 5-HT(3) receptors; 18-methoxycoronaridine was more selective in this regard than ibogaine.

View Article and Find Full Text PDF