J Heart Lung Transplant
February 2025
Background: The lung Composite Allocation Score (CAS) accounts separately for biological disadvantages stemming from candidate blood type and height using consensus-derived heuristics, which do not reflect the true supply of compatible organs available to candidates with specific combinations of blood type and height. Here, we develop an alternative CAS biological disadvantages subscore using a novel measure of donor supply.
Methods: Using Scientific Registry of Transplant Recipients data from February 19, 2015 to September 1, 2021, we modeled daily distance-adjusted supply of compatible donors, as a function of candidate blood type, height, and diagnosis group, using Poisson rate regression and applied the model to create a 10-point supply-based subscore.
Background: We describe and validate a new simulation framework addressing important limitations of the Simulated Allocation Models (SAMs) long used to project population effects of transplant policy changes.
Methods: We developed the Computational Open-source Model for Evaluating Transplantation (COMET), an agent-based model simulating interactions of individual donors and candidates over time to project population outcomes. COMET functionality is organized into interacting modules.