Publications by authors named "Mark Epler"

Objectives: Quaternary care centres have an imperative to serve as hospitals of last resort and must also meet professional quality targets. We developed a high-risk committee (HRC) to evaluate cases meeting pre-defined predicted risk cut-offs as a part of an overall quality improvement drive.

Methods: We describe the structure, outcomes and effects of the Penn HRC.

View Article and Find Full Text PDF

Objective: Patients with profound cardiogenic shock may require venoarterial (VA) extracorporeal membrane oxygenation (ECMO) for circulatory support most commonly via the femoral vessels. The rate of cardiac recovery in this population remains low, possibly because peripheral VA-ECMO increases ventricular afterload. Whether direct ventricular unloading in peripheral VA-ECMO enhances cardiac recovery is unknown, but is being more frequently utilized.

View Article and Find Full Text PDF

Arginine appears to be a semiessential amino acid in humans during critical illness. Catabolic disease states such as sepsis, injury, and cancer cause an increase in arginine utilization, which exceeds body production, leading to arginine depletion. This is aggravated by the reduced nutrient intake that is associated with critical illness.

View Article and Find Full Text PDF

Insulin-like growth factor-2 (IGF-2) plays a pivotal role in regulating intestinal epithelial metabolism, growth, and proliferation, but its regulatory effects on mucosal cell amino acid transport have not been well studied. The purpose of this in vitro study was to investigate the regulatory mechanisms and intracellular signaling pathways involved in the regulation of IGF-2 on glutamine transport in cultured intestinal cells. Continuous incubation with IGF-2 stimulated glutamine transport activity in cultured IEC-6 cells in a dose- and time-dependent fashion.

View Article and Find Full Text PDF

Glutamine is an essential nutrient for cell integrity during acidotic states such as shock, but the effect of extracellular pH on intestinal mucosal cell glutamine uptake is poorly understood. The purpose of this in vitro study was to investigate the intracellular signaling pathways involved in controlling intestinal glutamine transport during acidosis. Lowering the pH in the cell culture medium resulted in an increase in glutamine transport activity in a time- and pH-dependent fashion.

View Article and Find Full Text PDF