Proc Natl Acad Sci U S A
August 2011
Multiple lines of evidence support the hypothesis that the early evolution of life was dominated by RNA, which can both transfer information from generation to generation through replication directed by base-pairing, and carry out biochemical activities by folding into functional structures. To understand how life emerged from prebiotic chemistry we must therefore explain the steps that led to the emergence of the RNA world, and in particular, the synthesis of RNA. The generation of pools of highly pure ribonucleotides on the early Earth seems unlikely, but the presence of alternative nucleotides would support the assembly of nucleic acid polymers containing nonheritable backbone heterogeneity.
View Article and Find Full Text PDFWe describe an approach for performing single-molecule binding experiments on time scales from hours to days, allowing for the observation of slower kinetics than have been previously investigated by single-molecule techniques. Total internal reflection fluorescence microscopy is used to image the binding of labeled ligand to molecules specifically coupled to the surface of an optically transparent flow cell. Long-duration experiments are enabled by ensuring sufficient positional, chemical, thermal, and image stability.
View Article and Find Full Text PDFMany studies of RNA folding and catalysis have revealed conformational heterogeneity, metastable folding intermediates, and long-lived states with distinct catalytic activities. We have developed a single-molecule imaging approach for investigating the functional heterogeneity of in vitro-evolved RNA aptamers. Monitoring the association of fluorescently labeled ligands with individual RNA aptamer molecules has allowed us to record binding events over the course of multiple days, thus providing sufficient statistics to quantitatively define the kinetic properties at the single-molecule level.
View Article and Find Full Text PDFThe pathway of gene expression in higher eukaryotes involves a highly complex network of physical and functional interactions among the different machines involved in each step of the pathway. Here we established an efficient in vitro system to determine how RNA polymerase II (RNAP II) transcription is functionally coupled to pre-mRNA splicing. Strikingly, our data show that nascent pre-messenger RNA (pre-mRNA) synthesized by RNAP II is immediately and quantitatively directed into the spliceosome assembly pathway.
View Article and Find Full Text PDF