Fire and herbivory interact to alter ecosystems and carbon cycling. In savannas, herbivores can reduce fire activity by removing grass biomass, but the size of these effects and what regulates them remain uncertain. To examine grazing effects on fuels and fire regimes across African savannas, we combined data from herbivore exclosure experiments with remotely sensed data on fire activity and herbivore density.
View Article and Find Full Text PDFIntroduction: Allocation to plant defense traits likely depends on resource supply, herbivory, and other plant functional traits such as the leaf economic spectrum (LES) traits. Yet, attempts to integrate defense and resource acquisitive traits remain elusive.
Methods: We assessed intraspecific covariation between different defense and LES traits in a widely distributed tropical savanna herb, Solanum incanum, a unique model species for studying allocations to physical, chemical, and structural defenses to mammalian herbivory.
Herbivory is a major energy transfer within ecosystems; an open question is under what circumstances it can stimulate aboveground seasonal primary production. Despite multiple field demonstrations, past theory considered herbivory as a continuous process and found stimulation of seasonal production to be unlikely. Here, we report a new theoretical model that explores the consequences of discrete herbivory events, or episodes, separated in time.
View Article and Find Full Text PDFProtected areas provide major benefits for humans in the form of ecosystem services, but landscape degradation by human activity at their edges may compromise their ecological functioning. Using multiple lines of evidence from 40 years of research in the Serengeti-Mara ecosystem, we find that such edge degradation has effectively "squeezed" wildlife into the core protected area and has altered the ecosystem's dynamics even within this 40,000-square-kilometer ecosystem. This spatial cascade reduced resilience in the core and was mediated by the movement of grazers, which reduced grass fuel and fires, weakened the capacity of soils to sequester nutrients and carbon, and decreased the responsiveness of primary production to rainfall.
View Article and Find Full Text PDFUbiquitous declines in biochemical reaction rates above optimal temperatures (T) are normally attributed to enzyme state changes, but such mechanisms appear inadequate to explain pervasive T well below enzyme deactivation temperatures (T). Here, a meta-analysis of 92 experimental studies shows that product formation responds twice as strongly to increased temperature than diffusion or transport. This response difference has multiple consequences for biochemical reactions, such as potential shifts in the factors limiting reactions as temperature increases and reaction-diffusion dynamics that predict potential product inhibition and limitation of the reaction by entropy production at temperatures below T.
View Article and Find Full Text PDFThe Utah prairie dog (Cynomys parvidens), listed as threatened under the United States Endangered Species Act, was the subject of an extensive eradication program throughout its range during the 20th century. Eradication campaigns, habitat destruction/fragmentation/conversion, and epizootic outbreaks (e.g.
View Article and Find Full Text PDFEnvironmental changes are expected to shift the distribution of functional trait values in plant communities through a combination of species turnover and intraspecific variation. The strength of these shifts may depend on the availability of individuals with trait values adapted to new environmental conditions, represented by the functional diversity (FD) of existing community residents or dispersal from the regional species pool. We conducted a 3-year nutrient- and seed-addition experiment in old-field plant communities to examine the contributions of species turnover and intraspecific variation to community trait shifts, focusing on four key plant functional traits: vegetative height, leaf area, specific leaf area (SLA), and leaf dry matter content (LDMC).
View Article and Find Full Text PDFHerbivory by both grazing and browsing ungulates shapes the structure and functioning of terrestrial ecosystems worldwide, and both types of herbivory have been implicated in major ecosystem state changes. Despite the ecological consequences of differences in diets and feeding habits among herbivores, studies that experimentally distinguish effects of grazing from spatially co-occurring, but temporally segregated browsing are extremely rare. Here we use a set of long-term exclosures in northern Utah, USA, to determine how domestic grazers vs.
View Article and Find Full Text PDFDespite increasing evidence of the importance of intraspecific trait variation in plant communities, its role in community trait responses to environmental variation, particularly along broad-scale climatic gradients, is poorly understood. We analyzed functional trait variation among early-successional herbaceous plant communities (old fields) across a 1200-km latitudinal extent in eastern North America, focusing on four traits: vegetative height, leaf area, specific leaf area (SLA), and leaf dry matter content (LDMC). We determined the contributions of species turnover and intraspecific variation to between-site functional dissimilarity at multiple spatial scales and community trait responses to edaphic and climatic factors.
View Article and Find Full Text PDFGiven the role of fire in shaping ecosystems, especially grasslands and savannas, it is important to understand its broader impact on these systems. Post-fire stimulation of plant nutrients is thought to benefit grazing mammals and explain their preference for burned areas. However, fire also reduces vegetation height and increases visibility, thereby potentially reducing predation risk.
View Article and Find Full Text PDFDifferences in body sizes may create a trade-off between foraging efficiency (foraging gains/costs) and access to resources. Such a trade-off provides a potential mechanism for ecologically similar species to coexist on one resource. We explored this hypothesis for tundra (Cygnus columbianus) and trumpeter swans (Cygnus buccinator), a federally protected species, feeding solely on sago pondweed (Stuckenia pectinata) tubers during fall staging and wintering in northern Utah.
View Article and Find Full Text PDFThe effects of grazing on soil organic carbon (SOC) dynamics, particularly in the tropics, are still poorly understood. Plant compensation to grazing, whereby plants maintain leaf area (C input capacity) despite consumption (C removal) by grazers, has been demonstrated in tropical grasslands but its influence on SOC is largely unexplored. Here, the effect of grazing on plant leaf area index (LAI) was measured in a field experiment in Serengeti National Park, Tanzania.
View Article and Find Full Text PDFSoils of grasslands represent a large potential reservoir for storing CO2 , but this potential likely depends on how grasslands are managed for large mammal grazing. Previous studies found both strong positive and negative grazing effects on soil organic carbon (SOC) but explanations for this variation are poorly developed. Expanding on previous reviews, we performed a multifactorial meta-analysis of grazer effects on SOC density on 47 independent experimental contrasts from 17 studies.
View Article and Find Full Text PDFMany microbial taxa in the marine plankton appear super-saturated in species richness. Here, we provide a partial explanation by analyzing how species are organized, species packing, in terms of both taxonomy and morphology. We focused on a well-studied group, tintinnid ciliates of the microzooplankton, in which feeding ecology is closely linked to morphology.
View Article and Find Full Text PDFLarge mammalian herbivores may have positive, neutral, or negative effects on annual net aboveground plant production (NAP) in different ecosystems, depending on their indirect effects on availability of key nutrients such as soil N. In comparison, less is known about the corresponding influence of grazers, and nutrient dynamics, over annual net belowground plant production (NBP). In natural multi-species plant communities, it remains uncertain how grazing influences relative allocation in the above- and belowground compartments in relation to its effects on plant nutrients.
View Article and Find Full Text PDFGrazing occurs over a third of the earth's land surface and may potentially influence the storage of 10(9) Mg year(-1) of greenhouse gases as soil C. Displacement of native herbivores by high densities of livestock has often led to overgrazing and soil C loss. However, it remains unknown whether matching livestock densities to those of native herbivores can yield equivalent soil C sequestration.
View Article and Find Full Text PDFThe nature and extent of microbial biodiversity remain controversial with persistent debates over patterns of distributions (i.e. cosmopolitanism versus endemism) and the processes that structure these patterns (neutrality versus selection).
View Article and Find Full Text PDFTree cover is a fundamental structural characteristic and driver of ecosystem processes in terrestrial ecosystems, and trees are a major global carbon (C) sink. Fire and herbivores have been hypothesized to play dominant roles in regulating trees in African savannas, but the evidence for this is conflicting. Moving up a trophic scale, the factors that regulate fire occurrence and herbivores, such as disease and predation, are poorly understood for any given ecosystem.
View Article and Find Full Text PDFFire and herbivory are important determinants of nutrient availability in savanna ecosystems. Fire and herbivory effects on the nutritive quality of savanna vegetation can occur directly, independent of changes in the plant community, or indirectly, via effects on the plant community. Indirect effects can be further subdivided into those occurring because of changes in plant species composition or plant abundance (i.
View Article and Find Full Text PDFTerrestrial plant community responses to herbivory depend on resource availability, but the separate influences of different resources are difficult to study because they often correlate across natural environmental gradients. We studied the effects of excluding ungulate herbivores on plant species richness and composition, as well as available soil nitrogen (N) and phosphorus (P), across eight grassland sites in Serengeti National Park (SNP), Tanzania. These sites varied independently in rainfall and available soil N and P.
View Article and Find Full Text PDFMineral nitrogen (N) has been suggested as a potential factor causing declines in amphibian populations, especially in agricultural landscapes; however, there is a question as to whether it remains in the water column long enough to be toxic. We explored the hypothesis that mineral N can cause both lethal and sublethal toxic effects in amphibian embryos and larvae in a manipulative field experiment. We sampled 12 ponds, fertilizing half with ammonium nitrate fertilizer early in the spring, and measured hatching, survival, development, growth, and the incidence of deformities in native populations of wood frog (Rana sylvatica) and eastern tiger salamander (Ambystoma tigrinum tigrinum) embryos and larvae held in in situ enclosures.
View Article and Find Full Text PDFMammalian herbivores can have pronounced effects on plant diversity but are currently declining in many productive ecosystems through direct extirpation, habitat loss and fragmentation, while being simultaneously introduced as livestock in other, often unproductive, ecosystems that lacked such species during recent evolutionary times. The biodiversity consequences of these changes are still poorly understood. We experimentally separated the effects of primary productivity and herbivores of different body size on plant species richness across a 10-fold productivity gradient using a 7-year field experiment at seven grassland sites in North America and Europe.
View Article and Find Full Text PDFAllometric foraging theory suggests that herbivores of greatly differing size should co-exist through niche segregation, but a few studies of large-small herbivore foraging relationships have reported competitive interactions. This study addresses the potential roles of habitat productivity and large herbivore grazing intensities on large-small herbivore foraging interactions. We examined effects of different intensity simulated grazing treatments on forage abundance and quality for Utah prairie dogs (Cynomys parvidens) in a low productivity ecosystem, and consequent effects on prairie dog individual growth rates, foraging preferences, and activity budgets.
View Article and Find Full Text PDFOne cornerstone of ecological theory is that nutrient availability limits the number of species that can inhabit a community. However, the relationship between the spatial distribution of limiting nutrients and species diversity is not well established because there is no single scale appropriate for measuring variation in resource distribution. Instead, the correct scale for analyzing resource variation depends on the range of species sizes within the community.
View Article and Find Full Text PDFScaling laws that describe complex interactions between organisms and their environment as a function of body size offer exciting potential for synthesis in biology. Home range size, or the area used by individual organisms, is a critical ecological variable that integrates behaviour, physiology and population density and strongly depends on organism size. Here we present a new model of home range-body size scaling based on fractal resource distributions, in which resource encounter rates are a function of body size.
View Article and Find Full Text PDF