Late complications in surgically corrected ALCAPA patients are rare. We describe an interesting case of a patient with a thrombosed giant right coronary artery aneurysm which was discovered on a chest X-ray. ().
View Article and Find Full Text PDFNanomedicine research produces hundreds of studies every year, yet very few formulations have been approved for clinical use. This is due in part to a reliance on murine studies, which have limited value in accurately predicting translational efficacy in larger animal models and humans. Here, we report the scale-up of a nanoimmunotherapy from mouse to large rabbit and porcine atherosclerosis models, with an emphasis on the solutions we implemented to overcome production and evaluation challenges.
View Article and Find Full Text PDFNanotherapy has recently emerged as an experimental treatment option for atherosclerosis. To fulfill its promise, robust noninvasive imaging approaches for subject selection and treatment evaluation are warranted. To that end, we present here a positron emission tomography (PET)-based method for quantification of liposomal nanoparticle uptake in the atherosclerotic vessel wall.
View Article and Find Full Text PDFJACC Cardiovasc Imaging
October 2019
Objectives: This study sought to develop an integrative positron emission tomography (PET) with magnetic resonance imaging (MRI) procedure for accurate atherosclerotic plaque phenotyping, facilitated by clinically approved and nanobody radiotracers.
Background: Noninvasive characterization of atherosclerosis remains a challenge in clinical practice. The limitations of current diagnostic methods demonstrate that, in addition to atherosclerotic plaque morphology and composition, disease activity needs to be evaluated.
Background: Oxidation-specific epitopes (OSEs) are proinflammatory, and elevated levels in plasma predict cardiovascular events.
Objectives: The purpose of this study was to develop novel positron emission tomography (PET) probes to noninvasively image OSE-rich lesions.
Methods: An antigen-binding fragment (Fab) antibody library was constructed from human fetal cord blood.
Objectives: The goal of this study was to develop and validate a noninvasive imaging tool to visualize the in vivo behavior of high-density lipoprotein (HDL) by using positron emission tomography (PET), with an emphasis on its plaque-targeting abilities.
Background: HDL is a natural nanoparticle that interacts with atherosclerotic plaque macrophages to facilitate reverse cholesterol transport. HDL-cholesterol concentration in blood is inversely associated with risk of coronary heart disease and remains one of the strongest independent predictors of incident cardiovascular events.
Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI studies of atherosclerosis have been limited to two-dimensional (2D) multi-slice imaging.
View Article and Find Full Text PDFInflammation drives atherosclerotic plaque progression and rupture, and is a compelling therapeutic target. Consequently, attenuating inflammation by reducing local macrophage accumulation is an appealing approach. This can potentially be accomplished by either blocking blood monocyte recruitment to the plaque or increasing macrophage apoptosis and emigration.
View Article and Find Full Text PDFUnlabelled: Drug delivery to atherosclerotic plaques via liposomal nanoparticles may improve therapeutic agents' risk-benefit ratios. Our paper details the first clinical studies of a liposomal nanoparticle encapsulating prednisolone (LN-PLP) in atherosclerosis. First, PLP's liposomal encapsulation improved its pharmacokinetic profile in humans (n=13) as attested by an increased plasma half-life of 63h (LN-PLP 1.
View Article and Find Full Text PDFUnlabelled: The present study describes the development of a good manufacturing practice (GMP)-grade liposomal nanotherapy containing prednisolone phosphate for the treatment of inflammatory diseases. After formulation design, GMP production was commenced which yielded consistent, stable liposomes sized 100nm±10nm, with a prednisolone phosphate (PLP) incorporation efficiency of 3%-5%. Pharmacokinetics and toxicokinetics of GMP-grade liposomal nanoparticles were evaluated in healthy rats, which were compared to daily and weekly administration of free prednisolone phosphate, revealing a long circulatory half-life with minimal side effects.
View Article and Find Full Text PDFHigh-density lipoprotein (HDL) is a natural nanoparticle that exhibits an intrinsic affinity for atherosclerotic plaque macrophages. Its natural targeting capability as well as the option to incorporate lipophilic payloads, e.g.
View Article and Find Full Text PDFAtherosclerosis is a major cause of global morbidity and mortality that could benefit from novel targeted therapeutics. Recent studies have shown efficient and local drug delivery with nanoparticles, although the nanoparticle targeting mechanism for atherosclerosis has not yet been fully elucidated. Here we used in vivo and ex vivo multimodal imaging to examine permeability of the vessel wall and atherosclerotic plaque accumulation of fluorescently labeled liposomal nanoparticles in a rabbit model.
View Article and Find Full Text PDFBackground: Patients with familial hypercholesterolemia (FH) are characterized by elevated atherogenic lipoprotein particles, predominantly low-density lipoprotein cholesterol (LDL-C), which is associated with accelerated atherogenesis and increased cardiovascular risk.
Objectives: This study used (18)F-fluorodeoxyglucose positron emission tomography ((18)FDG-PET) to investigate whether arterial inflammation is higher in patients with FH and, moreover, whether lipoprotein apheresis attenuates arterial wall inflammation in FH patients.
Methods: In total, 38 subjects were recruited: 24 FH patients and 14 normolipidemic controls.
Inflammation is a key feature of atherosclerosis and a target for therapy. Statins have potent anti-inflammatory properties but these cannot be fully exploited with oral statin therapy due to low systemic bioavailability. Here we present an injectable reconstituted high-density lipoprotein (rHDL) nanoparticle carrier vehicle that delivers statins to atherosclerotic plaques.
View Article and Find Full Text PDFTherapeutic and diagnostic nanomaterials are being intensely studied for several diseases, including cancer and atherosclerosis. However, the exact mechanism by which nanomedicines accumulate at targeted sites remains a topic of investigation, especially in the context of atherosclerotic disease. Models to accurately predict transvascular permeation of nanomedicines are needed to aid in design optimization.
View Article and Find Full Text PDFNanomedicine can provide a potent alternative to current therapeutic strategies for atherosclerosis. For example, the encapsulation of anti-inflammatory drugs into liposomes improves their pharmacokinetics and biodistribution, thereby enhancing bioavailability to atherosclerotic plaques and improving therapeutic efficacy. The evaluation of this type of experimental therapeutics can greatly benefit from in vivo evaluation to assess biological changes, which can be performed by non-invasive imaging techniques, such as ¹⁸F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) and dynamic contrast enhanced magnetic resonance imaging (DCE-MRI).
View Article and Find Full Text PDFCardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. New diagnostic and therapeutic strategies are needed to mitigate this public health issue. Advances in nanotechnology have generated innovative strategies for diagnosis and therapy in a variety of diseases, foremost in cancer.
View Article and Find Full Text PDFObjectives: The goal of this study was to use noninvasive conventional and molecular magnetic resonance imaging (MRI) to detect and characterize abdominal aortic aneurysms (AAAs) in vivo.
Background: Collagen is an essential constituent of aneurysms. Noninvasive MRI of collagen may represent an opportunity to help detect and better characterize AAAs and initiate intervention.
Nat Rev Drug Discov
October 2011
The use of nanotechnology for medical purposes--nanomedicine--has grown exponentially over the past few decades. This is exemplified by the US Food and Drug Administration's approval of several nanotherapies for various conditions, as well as the funding of nanomedical programmes worldwide. Although originally the domain of anticancer therapy, recent advances have illustrated the considerable potential of nanomedicine in the diagnosis and treatment of atherosclerosis.
View Article and Find Full Text PDFAtherosclerosis is an inflammatory disease causing great morbidity and mortality in the Western world. To increase the anti-inflammatory action and decrease adverse effects of glucocorticoids (PLP), a nanomedicinal liposomal formulation of this drug (L-PLP) was developed and intravenously applied at a dose of 15 mg/kg PLP to a rabbit model of atherosclerosis. Since atherosclerosis is a systemic disease, emerging imaging modalities for assessing atherosclerotic plaque are being developed.
View Article and Find Full Text PDFHigh density lipoprotein (HDL) is an important natural nanoparticle that may be modified for biomedical imaging purposes. Here we developed a novel technique to create unique multimodality HDL mimicking nanoparticles by incorporation of gold, iron oxide, or quantum dot nanocrystals for computed tomography, magnetic resonance, and fluorescence imaging, respectively. By including additional labels in the corona of the particles, they were made multifunctional.
View Article and Find Full Text PDFNat Clin Pract Cardiovasc Med
August 2008
Targeted imaging and therapeutics is becoming a field of prime importance in the study and treatment of cardiovascular disease; it promises to enable early diagnosis, promote improved understanding of pathology, and offer a way to improve therapeutic efficacy. Agents, particularly for cardiovascular disease, have been reported to permit the in vivo imaging, by multiple modalities, of macrophages, vascular targets such as vascular cell adhesion molecule 1, and markers for angiogenesis such as alpha(v)beta(3) integrin. In this Article, we first discuss the general concept of multimodality nanoparticles and then focus in greater depth on their clinical application for molecular imaging and therapy.
View Article and Find Full Text PDF