Publications by authors named "Mark E Lasbury"

Obliterative bronchiolitis (OB) post-lung transplantation involves IL-17-regulated autoimmunity to type V collagen and alloimmunity, which could be enhanced by complement activation. However, the specific role of complement activation in lung allograft pathology, IL-17 production, and OB is unknown. The current study examines the role of complement activation in OB.

View Article and Find Full Text PDF

The effect of nitric oxide (NO) on Pneumocystis (Pc) organisms, the role of NO in the defense against infection with Pc, and the production of NO by alveolar macrophages (AMs) during Pneumocystis pneumonia (PCP) were investigated. The results indicate that NO was toxic to Pc organisms and inhibited their proliferation in culture. When the production of NO was inhibited by intraperitoneal injection of rats with the nitric oxide synthase inhibitor L-N(5)-(1-iminoethyl) ornithine, progression of Pc infection in immunocompetent rats was enhanced.

View Article and Find Full Text PDF

Background: Pneumocystis pneumonia is a common opportunistic disease in AIDS patients. The alveolar macrophage is an important effector cell in the clearance of Pneumocystis organisms by phagocytosis. However, both the number and phagocytic activity of alveolar macrophages are decreased in Pneumocystis infected hosts.

View Article and Find Full Text PDF

Dectin-1 is an important macrophage phagocytic receptor recognizing fungal beta-glucans. In this study, the mRNA levels of the Dectin-1 gene were found to be decreased by 61% in alveolar macrophages (AMs) from Pneumocystis-infected mice. The expression of Dectin-1 protein on the surface of these cells was also significantly decreased.

View Article and Find Full Text PDF

Polyamine levels are greatly increased in alveolar macrophages (AMs) during Pneumocystis pneumonia (PCP), leading to increased production of H(2)O(2), which causes AMs to undergo apoptosis. One of the mechanisms by which polyamine levels in AMs are elevated is enhanced uptake of exogenous polyamines. In this study, the possibility of targeting polyamine uptake as a treatment for PCP was examined.

View Article and Find Full Text PDF

Pneumocystis infection causes increased intracellular levels of reactive oxygen species (ROS) and the subsequent apoptosis of alveolar macrophages (Amø). Assessments of key prosurvival molecules in Amø and bronchoalveolar lavage fluids from infected rats and mice showed low levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and reduced activation of phosphoinositide-3 kinase (PI-3K). Ubiquitous calcium-sensing protein calmodulin protein and mRNA levels were also reduced in Amø during Pneumocystis pneumonia (Pcp).

View Article and Find Full Text PDF

Pneumocystis pneumonia (PcP) is the most common opportunistic disease in immunocompromised patients. Alveolar macrophages are responsible for the clearance of Pneumocystis organisms; however, they undergo a high rate of apoptosis during PcP due to increased intracellular polyamine levels. In this study, the sources of polyamines and mechanisms of polyamine increase and polyamine-induced apoptosis were investigated.

View Article and Find Full Text PDF

Pneumocystis pneumonia (PcP) is marked by substantial inflammatory damage to the lung. We have found that Toll-like receptor 2 (TLR2) mediates macrophage inflammatory responses to Pneumocystis and hypothesized that TLR2 deficiency would lead to less severe inflammation and milder lung injury during PcP. Histopathology examination showed that TLR2-/- mice with PcP indeed exhibited milder pulmonary inflammation.

View Article and Find Full Text PDF

The number of alveolar macrophages is decreased during Pneumocystis pneumonia (Pcp), partly because of activation of apoptosis in these cells. This apoptosis occurs in both rat and mouse models of Pcp. Bronchoalveolar lavage (BAL) fluids from Pneumocystis-infected animals were found to contain high levels of polyamines, including spermidine, N1-acetylspermine, and N1-acetylspermidine.

View Article and Find Full Text PDF

The number of alveolar macrophages is decreased in patients or animals with Pneumocystis pneumonia (Pcp). This loss of alveolar macrophages is in part due to apoptosis caused by Pneumocystis infection. The mechanism of apoptosis induction is unknown.

View Article and Find Full Text PDF

The innate immune response to Pneumocystis infection is not well understood. In this study, normal C57BL/6 mouse alveolar macrophages were found to respond to Pneumocystis murina organisms through Toll-like receptor 2 (TLR2), leading to the nuclear translocation of NF-kappaB and the production of proinflammatory cytokine tumor necrosis factor alpha (TNF-alpha) and chemokine macrophage inflammatory protein 2 (MIP-2). P.

View Article and Find Full Text PDF

Alveolar macrophages from Pneumocystis carinii-infected rats are defective in phagocytosis. To investigate whether this defect is due to a certain factor present in P. carinii-infected lungs, alveolar macrophages from uninfected rats were incubated with bronchoalveolar lavage (BAL) fluid samples from P.

View Article and Find Full Text PDF