Publications by authors named "Mark E Hwang"

Objective: We aim to test the hypothesis that neurovascular bundle (NVB) displacement by rectal hydrogel spacer combined with NVB delineation as an organ at risk (OAR) is a feasible method for NVB-sparing stereotactic body radiotherapy.

Methods: Thirty-five men with low- and intermediate-risk prostate cancer who underwent rectal hydrogel spacer placement and pre-, post-spacer prostate MRI studies were treated with prostate SBRT (36.25 Gy in five fractions).

View Article and Find Full Text PDF

Background: Multiple phase I-II clinical trials have reported on the efficacy and safety of prostate stereotactic body radiotherapy (SBRT) for the treatment of prostate cancer. However, few have reported outcomes for prostate SBRT using periprostatic hydrogel spacer (SpaceOAR; Augmenix). Herein, we report safety and efficacy outcomes from our institutional prostate SBRT experience with SpaceOAR placement.

View Article and Find Full Text PDF

Background: Whole-brain radiotherapy (WBRT) in patients with brain metastases (BM) is associated with neurocognitive decline. Given its crucial role in learning and memory, efforts to mitigate this toxicity have mostly focused on sparing radiation to the hippocampus. We hypothesized that BM are not evenly distributed across the brain and that several additional areas may be avoided in WBRT based on a low risk of developing BM.

View Article and Find Full Text PDF

Background: The SpaceOAR hydrogel is employed to limit rectal radiation dose during prostate radiotherapy. We identified a novel parameter - the product of angle θ and hydrogel volume - to quantify hydrogel placement. This parameter predicted rectum dosimetry and acute rectal toxicity in prostate cancer patients treated with stereotactic body radiotherapy to 36.

View Article and Find Full Text PDF

Purpose: To implement Velocity-based image fusion and adaptive deformable registration to enable treatment planning for preclinical murine models of fractionated stereotactic radiosurgery (fSRS) using the small animal radiation research platform (SARRP).

Methods And Materials: C57BL6 mice underwent 3 unique cone beam computed tomography (CBCT) scans: 2 in the prone position and a third supine. A single T1-weighted post-contrast magnetic resonance imaging (MRI) series of a murine metastatic brain tumor model was selected for MRI-to-CBCT registration and gross tumor volume (GTV) identification.

View Article and Find Full Text PDF

Aim: The number of breast cancer brain metastases is a prognostic clinical variable in the modified graded prognostic assessment (GPA) Index for breast cancer.

Patients & Methods: We retrospectively gathered data from 127 breast cancer patients who underwent radiation therapy for brain metastasis. Patients were stratified by both breast GPA and modified breast GPA scores, and survival was determined using the Kaplan-Meier curves and Cox proportional hazards model.

View Article and Find Full Text PDF

Breast cancer brain metastasis (BCBM) is associated with high morbidity and mortality. Patients with breast cancer risk factors associated with rapid development of BCBM could potentially benefit from early brain metastasis screening. We retrospectively reviewed all BCBM patients treated with brain radiotherapy at our institution from 1997 to 2015.

View Article and Find Full Text PDF

Purpose: Non-viral gene delivery vehicles such as polyethylenimine and polyamidoamine dendrimer effectively condense plasmid DNA, facilitate endocytosis, and deliver nucleic acid cargo to the nucleus in vitro. Better understanding of intracellular trafficking mechanisms involved in polymeric gene delivery is a prerequisite to clinical application. This study investigates the role of clathrin and caveolin endocytic pathways in cellular uptake and subsequent vector processing.

View Article and Find Full Text PDF

This paper uses a combined experimental and theoretical approach to gain unique insight into gene delivery. We report the synthesis and investigation of a new family of second-generation dendrons with four triamine surface ligands capable of binding to DNA, degradable aliphatic-ester dendritic scaffolds, and hydrophobic units at their focal points. Dendron self-assembly significantly enhances DNA binding as monitored by a range of experimental methods and confirmed by multiscale modeling.

View Article and Find Full Text PDF