Publications by authors named "Mark E Brezinski"

It has been questioned for over 15 years why only less than 20% of TCFAs trigger ACS. We illustrate TCFA rupture into adjacent longitudinal necrotic shafts of massive amounts of thrombogenic material into the blood, leading to catastrophic clot formation. This is the potential mechanism for TCFAs triggering ACS.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) elastography (OCTE) has the potential to be an important diagnostic tool for pathologies including coronary artery disease, osteoarthritis, malignancies, and even dental caries. Many groups have performed OCTE, including our own, using a wide range of approaches. However, we will demonstrate current OCTE approaches are not scalable to real-time, in vivo imaging.

View Article and Find Full Text PDF

It is now clearly established that Thin-Capped Fibroatheromas (TCFAs) lead to most Acute Coronary Syndromes (ACSs). The ability to selectively intervene on TCFAs predisposed to rupture and ACSs would dramatically alter the practice of cardiology. While the ability of OCT to identify thin walled plaques at micron scale resolutions has represented a major advance, it is a misconception that it can reliably identify TCFAs.

View Article and Find Full Text PDF

Macroscopic quantum systems (MQS) are macroscopic systems driven by quantum rather than classical mechanics, a long studied area with minimal success till recently. Harnessing the benefits of quantum mechanics on a macroscopic level would revolutionize fields ranging from telecommunication to biology, the latter focused on here for reasons discussed. Contrary to misconceptions, there are no known physical laws that prevent the development of MQS.

View Article and Find Full Text PDF

Many musculoskeletal disorders (MDs) are associated with irreversible bone and cartilage damage; this is particularly true for osteoarthritis (OA). Therefore, a clinical need exists for modalities which can detect OA and other MDs at early stages. Optical coherence tomography (OCT) is an infrared-based imaging, currently FDA approved in cardiology and ophthalmology, which has a resolution greater than 10 microns and acquisition rate of 120 frames/second.

View Article and Find Full Text PDF

A clinical need exists for a cheap and efficient standard for polarization sensitive optical coherence tomography (PS-OCT). We utilize prehistoric fossilized teeth from the Megalodon shark and European horse as an unconventional, yet robust standard. Given their easy accessibility and the microstructural consistency conferred by the process of fossilization, they provide a means of calibration to reduce error from sources such as catheter bending and temperature changes.

View Article and Find Full Text PDF

This preliminary study assessed trimmed supraspinatus tendons from rotator cuff repairs (RCRs) to compare the samples' surgically cut ends and torn ends with histopathology and polarization-sensitive optical coherence tomography (PS-OCT) imaging. PS-OCT can be used to assess collagen content and organization in birefringent tissue and shows promise in RCR. The data were compared to determine correlations between luminosity measured from histopathology and PS-OCT.

View Article and Find Full Text PDF

Single channel PS-OCT has advantages for assessing birefringent tissue components in various clinical scenarios, with implications for assessing pathology, ranging from osteoarthritis to myocardial infarction. While the technique has been successfully used both in vitro and in vivo, there have been limited attempts to optimize single channel PS-OCT with respect to performance, particularly paddle rotation. In this study, we developed and tested a new approach for the real-time assessment of birefringence through tailoring of reference arm polarization.

View Article and Find Full Text PDF

With swept source optical coherence tomography (SS-OCT), imprecise signal calibration prevents optimal imaging of biological tissues such as coronary artery. This work demonstrates an approach using a true logarithmic amplifier to precondition the clock signal, with the effort to minimize the noises and phase errors for optimal calibration. This method was validated and tested with a high-speed SS-OCT.

View Article and Find Full Text PDF

Current treatments for osteoarthritis are pain relief and total joint arthroplasty. There is a clinical need for early osteoarthritis diagnostic methods for potential preventive interventions. The resolution achieved with radiography, magnetic resonance imaging (MRI), and arthroscopy is too limited for the assessment of early disease.

View Article and Find Full Text PDF

For high-speed swept-source optical coherence tomography (SS-OCT), the real-time calibration process to convert the OCT signal to wave number space is highly essential. A novel calibration process/algorithm using a genetic algorithm and precise interpolation is developed. This algorithm is embedded and validated in a SS-OCT system with 16-kHz A-scan rate.

View Article and Find Full Text PDF

We previously demonstrated, with both theoretical and experimental studies, the dynamic range limitation with spectral domain optical coherence tomography (OCT) relative to time domain OCT. A significant portion of this limitation was due to the difference of analog/digital conversion. In this paper, a new method of true logarithmic amplification is discussed theoretically and tested experimentally to increase the dynamic range of a swept source OCT.

View Article and Find Full Text PDF

Quantum state exchange between light and matter is an important ingredient for future quantum information networks as well as other applications. Photons are the fastest and simplest carriers of information for transmission but in general, it is difficult to localize and store photons, so usually one prefers choosing matter as quantum memory elements. Macroscopic superposition and nonlocal quantum interactions have received considerable interest for this purpose over recent years in fields ranging from quantum computers to cryptography, in addition to providing major insights into physical laws.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) has demonstrated considerable potential for a wide range of medical applications. Initial work was done in the time domain OCT (TD-OCT) approach, but recent interest has been generated with spectral domain OCT (SD-OCT) approaches. While SD-OCT offers higher data acquisition rates and no movable parts, we recently pointed out theoretical inferior aspects to its performance relative to TD-OCT.

View Article and Find Full Text PDF

Increasing penetration remains one of the most important issues in optical coherence tomography (OCT) research, which we achieved with a parallel ultrasound beam. In addition to qualitative improvements of tissue imaging, quantitative improvements in resolution of up to 28%+/-2% was noted. At lower frequencies and energies the improvement occurred primarily by altering the detection of multiply scattered light (photon-phonon interaction), which was substantially greater in solids than in liquids (even though the liquid had the higher scattering coefficient).

View Article and Find Full Text PDF

Selected historical aspects of the transition of optical coherence tomography (OCT) research from the bench to bedside are focused on. The primary function of the National Institutes of Health (NIH) is to improve the diagnosis and treatment of human pathologies. Therefore, research funded by the NIH should have a direct envisioned pathway for transitioning bench work to the bedside.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) based on spectral interferometry has recently been examined, with authors often suggesting superior performance compared with time domain approaches. The technologies have similar resolutions and the spectral techniques may currently claim faster acquisition rates. Contrary to many current opinions, their detection parameters may be inferior.

View Article and Find Full Text PDF

Assessing tissue birefringence with imaging modality polarization-sensitive optical coherence tomography (PS-OCT) could improve the characterization of in vivo tissue pathology. Among the birefringent components, collagen may provide invaluable clinical information because of its alteration in disorders ranging from myocardial infarction to arthritis. But the features required of clinical imaging modality in these areas usually include the ability to assess the parameter of interest rapidly and without extensive data analysis, the characteristics that single-detector PS-OCT demonstrates.

View Article and Find Full Text PDF

The objective of this study was to develop and verify a new technique for monitoring the progression of osteoarthritis (OA) by combining a rat model with the imaging modality optical coherence tomography (OCT). Time-sequential, in vivo, OCT imaging was performed on the left femoral condyles of 12 Wistar rats following sodium-iodoacetic acid-induced OA progression. The right femoral condyles (untreated) were also imaged and served as controls.

View Article and Find Full Text PDF

Introduction: Current evidence indicates that most plaques classified as vulnerable or ruptured plaque do not lead to unstable angina or myocardial infarction. Improved methods are needed to risk stratify plaques to identify those which lead to most acute coronary syndromes. Collagen depletion in the intima overlying lipid collections appears to be a critical component of unstable plaques.

View Article and Find Full Text PDF

This manuscript examines intravascular imaging with optical coherence tomography (OCT). OCT is a potentially attractive intravascular imaging technology due to its high resolution, small catheters/guidewires, and ability to be combined with spectroscopic techniques. Its potential disadvantages remain its limited penetration and signal attenuation by blood.

View Article and Find Full Text PDF