Publications by authors named "Mark E Adamo"

Article Synopsis
  • The White Collar Complex (WCC) in Neurospora circadian rhythm regulates the frq gene, and although phosphorylation of WCC is well-studied, the impact of other post-translational modifications like acetylation and mono-methylation is less understood.
  • Mass-spectrometry analyses revealed nine acetylation sites and nine mono-methylation sites on WCC, but most individual modifications do not significantly affect the circadian period.
  • The findings indicate that phosphorylation is the main regulator of the circadian cycle, while some acetylation events might influence WCC's response to light signals.
View Article and Find Full Text PDF

The family of Phosphoprotein Phosphatases (PPPs) is responsible for most cellular serine and threonine dephosphorylation. PPPs achieve substrate specificity and selectivity by forming multimeric holoenzymes. PPP holoenzyme assembly is tightly controlled, and changes in the cellular repertoire of PPPs are linked to human disease, including cancer and neurodegeneration.

View Article and Find Full Text PDF

Meiosis is a specialized cell cycle that requires sequential changes to the cell division machinery to facilitate changing functions. To define the mechanisms that enable the oocyte-to-embryo transition, we performed time-course proteomics in synchronized sea star oocytes from prophase I through the first embryonic cleavage. Although we found that protein levels were broadly stable, our analysis reveals that dynamic waves of phosphorylation underlie each meiotic stage.

View Article and Find Full Text PDF

The comprehensive but specific identification of RNA-binding proteins as well as the discovery of RNA-associated protein functions remain major challenges in RNA biology. Here we adapt the concept of RNA dependence, defining a protein as RNA dependent when its interactome depends on RNA. We converted this concept into a proteome-wide, unbiased, and enrichment-free screen called R-DeeP (RNA-dependent proteins), based on density gradient ultracentrifugation.

View Article and Find Full Text PDF
Article Synopsis
  • - A complex interaction exists between kinases and phosphatases, where over 400 kinases are responsible for phosphorylating proteins, but only seven phosphatases (PPPs) mainly handle their dephosphorylation, leading to an initially perceived imbalance in their functions.
  • - Contrary to earlier assumptions that PPPs were non-specific, it is now understood that they achieve specificity through unique associations with noncatalytic subunits, creating numerous distinct signaling complexes.
  • - A novel chemical proteomic strategy was developed to study the PPPs and their interacting proteins, using inhibitors and advanced mass spectrometry to map out specific PPP expression in various human cancer cell lines and tissues, revealing new protein interactions.
View Article and Find Full Text PDF

Polo-like kinase 1 (Plk1) is an essential protein kinase that promotes faithful mitotic progression in eukaryotes. The subcellular localization and substrate interactions of Plk1 are tightly controlled and require its binding to phosphorylated residues. To identify phosphorylation-dependent interactions within the Plk1 network in human mitotic cells, we performed quantitative proteomics on HeLa cells cultured with kinase inhibitors or expressing a Plk1 mutant that was deficient in phosphorylation-dependent substrate binding.

View Article and Find Full Text PDF

Protein phosphorylation is a crucial regulatory mechanism that controls many aspects of cellular signaling. Casein kinase 2 (CK2), a constitutively expressed and active kinase, plays key roles in an array of cellular events including transcription and translation, ribosome biogenesis, cell cycle progression, and apoptosis. CK2 is implicated in cancerous transformation and is a therapeutic target in anti-cancer therapy.

View Article and Find Full Text PDF

Antibodies raised in Indian rhesus macaques [ (MM)] in many preclinical vaccine studies are often evaluated for titer, antigen-recognition breadth, neutralization potency, and/or effector function, and for potential associations with protection. However, despite reliance on this key animal model in translation of promising candidate vaccines for evaluation in first in man studies, little is known about the properties of MM immunoglobulin G (IgG) subclasses and how they may compare to human IgG subclasses. Here, we evaluate the binding of MM IgG1, IgG2, IgG3, and IgG4 to human Fc gamma receptors (FcγR) and their ability to elicit the effector functions of human FcγR-bearing cells, and unlike in humans, find a notable absence of subclasses with dramatically silent Fc regions.

View Article and Find Full Text PDF

MS/MS database search algorithms derive a set of candidate peptide sequences from in silico digest of a protein sequence database, and compute theoretical fragmentation patterns to match these candidates against observed MS/MS spectra. The original Tempest publication described these operations mapped to a CPU-GPU model, in which the CPU (central processing unit) generates peptide candidates that are asynchronously sent to a discrete GPU (graphics processing unit) to be scored against experimental spectra in parallel. The current version of Tempest expands this model, incorporating OpenCL to offer seamless parallelization across multicore CPUs, GPUs, integrated graphics chips, and general-purpose coprocessors.

View Article and Find Full Text PDF

Cyclin-dependent kinase 1 (Cdk1) is an essential regulator of many mitotic processes including the reorganization of the cytoskeleton, chromosome segregation, and formation and separation of daughter cells. Deregulation of Cdk1 activity results in severe defects in these processes. Although the role of Cdk1 in mitosis is well established, only a limited number of Cdk1 substrates have been identified in mammalian cells.

View Article and Find Full Text PDF

Protein phosphorylation is an important regulatory mechanism controlling mitotic progression. Protein phosphatase 6 (PP6) is an essential enzyme with conserved roles in chromosome segregation and spindle assembly from yeast to humans. We applied a baculovirus-mediated gene silencing approach to deplete HeLa cells of the catalytic subunit of PP6 (PP6c) and analyzed changes in the phosphoproteome and proteome in mitotic cells by quantitative mass spectrometry-based proteomics.

View Article and Find Full Text PDF

Complex phosphorylation-dependent signaling networks underlie the coordination of cellular growth and division. In the fission yeast Schizosaccharomyces pombe, the Dual specificity tyrosine-(Y)-phosphorylation regulated kinase (DYRK) family protein kinase Pom1 regulates cell cycle progression through the mitotic inducer Cdr2 and controls cell polarity through unknown targets. Here, we sought to determine the phosphorylation targets of Pom1 kinase activity by SILAC-based phosphoproteomics.

View Article and Find Full Text PDF